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1.0  INTRODUCTION 

$        The Specification Language, AXES, is a formal notation for writ- 
ing functional definitions of systems. Although it is not a pro- 
gramming language, AXES is a complete and well-defined language 
capable of being analyzed by a computer. 

I 
Higher Order Software (HOS) (HAM76b) is a formal system theory 
that forms the foundations of the Specification Language, AXES. 
HOS is a unified systems-engineering methodology that encompasses 

% all phases and all disciplines of computer-based systems develop- 
ment. With the methodology of HOS, we apply the same axioms 
(Appendix I) and therefore the same decomposition techniques 
throughout an integrated system development (HAM76c). AXES is 

I        the tool for defining and describing functions and interfaces of 
a system throughout all phases of a system development. 

The purpose of AXES is to be able to express a specification in 
a form which is equivalent to an HOS control map (HAM76a). Thus, 
systems described in AXES are based on the use of three primi- 
tive control structures, which were derived from the HOS axioms 
(Appendix II). With the syntax of AXES, we are able to describe 

1       a system using the primitive control structures, intrinsic df.ta 
types and universal primitive operations of AXES, or we have the 
option of defining new data types or new control structures which 
can also be used to describe a system. 

) 

A computer-based AXES analyzer can be developed in order to check 
the consistency and completeness of functions described within 
AXES statements. 

t 
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2.0  SEMANTIC PRELIMINARIES AND A NOTATIONAL CONVENTION 

Throughout our description of AXES, we will be using a notation 

that is conventional in semantics, but that may not be familiar 

to most readers. One of the most fundamental insights of seman- 

tics is the fact that we can talk about an object only by using 

a name of the object. To talk about the man in Figure 2.1, for 

example, we have to use a sentence that contains the man's name, 

not the man himself. 

Figure 2.1 

The sentence 

(1) John is standing beside the house 

is a true description of the situation pictured in Figure 2.1, 

but the purported sentence 

(2) X is standing beside the house 

is not a sentence at all, because the man himself appears in it, 

rather than his name. How we say things about objects is always 

one step removed from the objects themselves. 
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This fact is so basic a part of how we communicate information 

that we generally remain entirely unaware of it, taking it entire- 

ly for granted like a pulse or heartbeat. When it is brought 

to one's attention, it may even seem trival or unimportant. 

Serious problems can arise, however, when we begin talking about 

a language, such as AXES, rather than simply using a language 

to +-.alk about objects. Since how we say something must of ne- 

cessity be one step removed, linguistically, from what we are 

saying about it, great care must be taken to distinguish the 

names in the language we are talking about from the names in ttie 

language we are using. 

When we are talking about a language, we are treating the name« 

of that language as objects« We can only talk about those ob- 

jects (names), as with any Ejects, by using names of the». I-fc 

follows that we need a nota^xon for names of names, if we intend 

to talk consistently about names. The notation conventionally 

used for this in semantics is enclosure within quotation marks« 

To form the name of a given name (or written symbol of any kind) 

we include that name (or symbol) in quotation marks. 

We can clarify this notation somewhat by examining a few examples 

Consider the man in Figure 2.2 and the four purported sentences 

in (3) and (4) : 

nn 

Jiamy's 

Peanuts 

n n nn nn 

10< each 

Figure 2.2 
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(3) (a) Jimmy sells peanuts 

(b)  * Jimmy is bisyllabic 

(4) (a)  * "Jimmy" sells peanuts 

(b)  "Jimmy" is bisyllabic 

In both pairs of purported sentences (3) and (4), those which 

are prefixed with asterisks (*) are not really sentences at all, 

but meaningless strings of words, while those without asterisks 

are normal meaningful sentences which also happen to be true. 

Sentence (3a) uses the man's name to talk about the man, saying 

that the man sells peanuts. Purported sentence (4a), in contrast, 

is not using a name of the man, but a name of t&j man's name, 

since the name it uses as its subject is the man's name in quotes. 

Since (4a) uses the name of a name, it is talking about a name, 

saying that that name sells peanuts, an obvious absurdity. 

Sentence (4b), however, is all right, because, while also talking 

about a name, what it says about that name makes sense. Names 

cannot sell peanuts, but they can be bisyllabic. Purported sen- 

tence (3b), conversely, is an absurdity, like (4a). By using 

the name of a man it talks about the man himself, saying that 

he is bisyllabic, which makes no sense. 

Successive embedding ol quotation marks can be used if we want 

to talk about names, names of names, names of names of names, 

etc., as illustrated in Figure 2.3. 
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If we begin at the right and move leftward, we first have our 

object, the man, and we then get his name. To talk about the 

man, we must use his name. We are then free to view that name 

as an object and we get its name by moving one more step to the 

left. To talk about the name we must use its name (i.e., the 

thing in quotation marks). If necessary we can then treat that 

name as an object and talk about it using its name, obtained by 

moving still one more step to the left. What we ofcrtain then is 

the name of the name of the name of the man, which we use to 

talk about the name of the name of the man. The process can be 

continued indefinitely, in principle, but it is unlikely that we 

would ever have to go beyond the steps shown in the diagram, in 

actual practice. 

The main point to be kept in mind is the need to distinguish 

carefully between an object ana its name and to make sure that 

we use the name, not the object itself, to talk abent the object 

In (3) and (4) we saw how confusing the object with its name can 

turn a seemingly normal sentence into an absurdity-  Sometimes, 

however, it can produce a perfectly meaningful sentence whose 

actual meaning differs from what it was intended to mean. Each 

of the sentences 

(5) Jimmy sounds funny 

(6) "Jimmy" sounds funny 

is a perfectly meaningful sentence, but their meanings are very 

different. Sentence (5) makes sense if completed wäth 

(7) in contrast with Northerners 

but sentence (6) must be completed with something liJke 

(8) because it's really just a nick-name 

to make sense. 
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If we add (7) to (6) or (8) to (5), we get meaningless nonsense 

like (3b) and (4a). 

The reason this principle is important for us, of course, is ttiat 

we are describing a language, AXES, and we must be careful that: 

what we say about that language makes sense. We will be talking 

about the names and other symbols of AXES, i.e., we will be treat- 

ing them as objects, so we must be careful to use their names 

in doing so. The quotation-mark convention enables us to form 

the names of the AXES names and thus to talk about the AXES names 

themselves in a consistent way. 

In AXES what corresponds to names are variables and constant sym- 

bols. A constant symbol is the name of a particular value and 

corresponds to a proper name like "John.1* A variable is the na»e 

of more than one possible value and corresponds to a common noun 

like Na man." Figure 2.4a exhibits a number of constant symbols 

and Figure 2.4b exhibits some variables. 

(a) (b) 

Figure 2.4 

Mote that the quotation mark convention applies as much to common 

nouns as to proper names., so the sentences 

A man has two arms 

"A man" contains two words 

make sense, while the purported sentences 
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"A man" has two arms 

A man contains two words 

do not. 

In describing AXES we will use variables and constants themselves 

to make statements about the values they name, and we will use 

the names (quoted forms) of variables and constants to make state- 

ments about the variables and constants themselves. The sen- 

tences 

x • y+z 

w - 3 

x is an integer 

y and z are of the same type, 

for example, make statements about values by using the variables 

and constant symbols that name those values. Sentences like 

"x" represents the same value as "y+z" 

"w" represents a value of type integer 

"y" and "z" represent values of the same type 

"q" is a variable and "3" is a constant symbol, 

in contrast,, make statements about variables and constant symbols 

by using the quotation-marked symbols th&t name them. In de- 

scribing AXES we will try to adhere scrupulously to this conven- 

tion, so that it will always be clear whether we are talking 

about the objects (values, functions, mappings, structures, etc.) 

that AXES talks about or whether we are talking about the vari- 

ables and other symbols that make up AXES itrelf. (Appendix VI) 
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3.0  OBJECTS OF SPECIFICATION 

An AXES system is a control hierarchy.  The structure of any 

hierarchy is determined by the objects that belong -to the hier- 

archy and the relationship that exists between the objects of 

the hierarchy.  For AXES systems, the objects are variables, values, 

functions, and trees; the relationship is control. 

An AXES system can be graphically represented as a tree in which 

each node identifies a member of a given control hierarchy. 

An AXES tree structure, called a control map, is a relation on 

a set of mappings, i.e, a set of tuples whose members are sets 

of ordered pairs.  An invocation tree, illustrated rn Figure 3.1, 

exhibits the names of the sets of ordered pairs (i.e-, mappings) 

which complete the functional specification for System A, When 

our intent is to understand or describe the relation on the set 

of mappings, the corresponding function of System A is described 

as a decomposition of A into levels. The most immediate lower 

level of A is a realization of A and only A.  Functions A, and 

A2 are on the first lower level of A, and functions B, and B~ 

are on the second lower level of A with respect to A*-. 

A controls the use of A, and A2? A2 controls the use of B, and 

B-»  The properties of control are determined by th* axioms of 

HOS. When we refer to A controlling A, and A2# A is referred 

to as a controller or as a module.  When we refear to A, with 

respect to A, A, is referred to as a function. 

A 

Al      *2 

Bl      B2 

Figure 3.1:    System A Invocation Tree 

8 
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A control map includes a description of each node in terms of 

the input/output representation of each function as well as the 

name associated with each node of the hierarchy. A control map 

is constructed using abstract control structures (see Section 8.0) 

A control map of System A is shown in Figure 3.2. 

A(x) 

y - A1(g) g^= A2(X) 

Bt<*,) g2 = B2(x2) 

Figure 3.2:  A Control Map of System A 

A representation of the input value or output value of a func- 

tion is called an input or output variable, respectively.  In 

(3-1), Mx" is an input variable of A; 

of A. 

My It is an output variable 

A(x) (3-1) 

Suppose "x" represents any one of the integers 5, 8, or 2. We 

refer to these integers as values of "x". Likewise, if "y" re- 

presents any one of the integers 6, 10, or 2, we refer to these 

integers as values of "yM. 

In an AXES system, a function refers to the relationship (i.e., 

a mapping) between the input values and the output values where 

these values are represented by particular variables (c.f. FUNC- 

TION definition Section 8.0). This relationship is restricted 

in AXES so that any input value corresponds to one and only one 

output value. 

A data type is a set of values characterized by a set of primi- 

tive operations. When a variable is of a data type, that vari- 

able represents a value of that data type.  A variable of a data 

HIGHER ORDER SOFTWARE, INC • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 



type may be replaced by a set of variables whose values collec- 

tively represent the same value as the variables of the data type. 

This collective set of variables is the data structure of the 

variable of the data type. 

Suppose "y" in (1) is replaced by "y,M and "y ", and "x" by "x," 

and Mx2". The data structure of x is (x,,x~), and the data 

structure of y is (ywy2) • The data structures of x and y could 

be used by a function, such as B, to accomplish the same mapping 

as System A. 

(yl'y2) s B**i'x2J (3-2) 

If x is of data type 2-tuple integer, then (1,10) is a value 

of "xM.  If y is of data type 2-tuple integer, then (1,10) is 

also a value of "y."  "x" and "y" represent the same set of *• 

values, i.e., "x" and My" are variables that represent values 

of the same data type. A and B are equivalent functions. 

When our intent is to use a system as the input variable or out- 

put variable of another system, A is of data type system and 

the names of the functions on the first immediate lower level 

of A (i.e., A, and A,) describe the data structure of System A. 

Similarly, B, and B, are the data structure of A2« When "A" 

is considered an input or output variable of another system, "A" 

represents a layer. 

There are many tradeoffs that must be considered in developing 

the layers of a system.  These involve not only how many layers, 

but whether or not these layers are created statically (develop- 

ment layers) or dynamically (execution layers). 

If, for example, a translator (such as a compiler) converted one 

description of a specification of A to another description of a 

specification of A, System A would exist as at least two develop- 

ment layers.  If, however, a real-time translator (such as an 
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operating system) converted a System A layer to an executable 

mode in real time, we would call that new layer of A an execu- 

tion layer. 

In defining a system it may be necessary to describe the systei 

both as a function and as a layer. The syntax of AXES provides 

the means to differentiate between these two concepts. 

The intent of an AXES specification is to describe the functional, 

data, and performance aspects of a system independently of a 

particular resource allocation (i.e., implementation). The 

functional description provides the specification of the decom- 

position of a system; the data description provides the specifi- 

cation for the data types and structures to be used in the func- 

tional specification; the performance description asserts the 

limitations or constraints associated with the use of functional 

or data descriptions. With AXES we are able to define systems 

in which resource allocation requirements (e.g., time and memory) 

can be specified, thus allowing for resource allocation alterna- 

tives. Each of these aspects of a system can be documented in 

a standard way with AXES. 

11 
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4.0  SPECIFICATION VS. IMPLEMENTATION LANGUAGE 

Using AXES, a system designer describes a system as a set of 

functions and data that look very much like the procedures and 

data of a programming language. However, the functions and data 

of AXES differ in furdamental ways from the procedures and data 

of programming languages. 

In programming languages, a variable "x" is a name that desig- 

nates a unit of storage where values may be placed.  That is a 

statement of the form "x • y+z" means, "add the current values 

of 'y' and ' z' and store the result in 'x'n.  In AXES, the same 

statement means "'x' represents the same value as is represented 

by 'y+z1".  In AXES, a variable is the name of a particular un- 

specified value.  A constant symbol, such as "2", for example, 

is, in contrast, the name of a particular specified value.  The 

meaning of "x«y+z;" in AXES differs from its meaning in programm- 

ing languages also as a result of a difference in meaning of "-". 

In a programming language, "-" is a directional symbol meaning 
His to be replaced with." The statement "x+y«z" means, in effect, 

"replace whatever value is stored in 'x1 with the result of adding 

whatever value is stored in 'y' to whatever value is stored in 
1 z*."  In AXES, however, "•" is a non-directional symbol meaning 

"is the same as." The statement "x*y+z" means "the value of 'x1 

is the same as the sum of the value of *y' and the value of 'z'," 

or equivalently, "'x' represents the same value as 'y+z1 repre- 

sents." The interpretation of "»" in AXES is thus identical to 

the interpretation of "»" in mathematics. AXES statements are 

statements of fact; they are not commands to be performed. 

Programming languages make use of the notion of an order of evalu- 

ation or a flow of execution. There is no such notion in AXES. 

In AXES we use variables to specify equality relationships among 

values.  AXES serves to define the variables that represent 

values in terms of other defined variables that represent values. 

In AXES, the following statements simply define the variables 

"x", "w", and "z" by using them in statements of equality. 

12 
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x * a+b; (4-1) 

v = 5; (4-2> 

2 = f(k); (4-3) 

Each of these variables represent one of a set of values.  If 

statements (4-1),(4-2),(4-3) were part of an AXES system speci- 

fication, (4-1) could appear after (4-3) or (4-2), because AXES 

statements can appear in any order. 

In AXES, the following statement defines the variable "x" by 

using the constant symbol "True". 

x = AND(True,True) (4-4) 

In AXES, the following statement defines a relationship among 

systems. 

Sum(Prod(x,y),x) » Opp(x,Diff(x,y) (4-5) 

In this statement, "x" always represents the same value, and 

"y" always represents the same value. 

In AXES, a variable is specified to be referenced only once fosr 

a given change of state at a given level of a control hierarchy. 

(This is called single reference.)  A variable is specified to 

be assigned only once for a given change of state at a given 

level of a control hierarchy.  {This is called single assign- 

ment) .  Thus, the concept of sharing location«, is not assumed; 

yet, this concept may still be introduced into an implementation 

model. 

Functions are defined in such a way that the ordering between 

functions in a given system can be determined.  The procedures 

in an implementation model can thus exist within an unlimited 

multiprocessor system, a multiprogramming system or a sequential 

programming system. 

13 
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Each function is explicitly shown as unique in AXES. Yet, the 

concept of sharing instructions  may still be introduced into an 

implementation model. 

Each AXES function is specified to be initiated upon receipt of 

its first input value. An AXES function is ready for complete 

execution upon receipt of all of its input values and is completed 

upon receipt of all its output values. In an AXES system, the 

specification of a value is synonomous with the specification of 

an event. Thus, interrupts or searches for event*  are not assumed; 

yet, they may still be introduced into an implementation model. 

14 
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5.0 NOMENCLATURE 

In the description of AXES the following nomenclature will be 

used. 

":«"  means "is". 

"{ }" means choose one of the rows contained witthin. 

H[ ]" means the enclosed is optional. 

"..." means repeat with different values as often as 
necessary. 

In the syntax of AXES, the following nomenclature wiUL be used 

Upper case names will designate lexical items of AXES (key* 
words). 

"set of variables" means a list of variables possibly en- 
closed in parentheses. 

Constants and abstract control structure names begin with 
an upper case character followed by zero or more Slower case 
characters. 

A variable is indicated by all lower case characters. 

A valne of a particular data type can be indicated by the 
name of the data type in lower case characters, possibly 
subscripted. 

15 

HIGHER ORDER SOFTWARE, INC • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 6614900 

I 
MgyNr        i 



6.0  COMMENTS 

Comments can be inserted between statements.  A comment is de- 

limited at the start by the character pair /*, and at the end by 

the character pair */. Any character may appear in the co—m nt 

(except for * followed by /). 

7.0  MULTI-LINE FORMAT 

A variable in AXES can be a subscripted symbol, a super scrip-ted 

symbol, or an unsubscripted or unsuperscripted symbol. 

AXES allows a multi-line format (LIC74) (LAN52) corresponding: 

to natural mathematical notation. For example, the following1 

statements are acceptable in AXES. 

z2 zl 

p(t) F(x,t) 

2    2" 
a • b + c      + dÄ 

e3 

Subscripts 

The subscripting of a variable in AXES always signifies a map- 

ping between the value of the subscript variable and the value 

of the variable that is subscripted. Thus "A." shows a relation- 

ship between i and A.  If that relationship is function F, such 

that 

Ai - F(i) 

iM could represent an index for memory slot "A.1 

16 
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... 

If "x " relates x and t by function G, i.e., 

xt - 6(t) 

"t" could represent an index for time slot "x ".  The subscript 

mechanism is helpful in functionally representing the specifi- 

cations of resource allocation of storage and time with respect 

to a particular system. 

Superscripts 

C 

A variable with a left superscript represents a member of a 

member of a partition of & set of values.  For example, if x 

is an integer, the members of the sets that make up a parti- 

tion of the set of which x is a member might be represented by 
«1, x 
and " 

H and 
2 

x" where N xN represents values greater than 10, 

xN represents values less than or equal to 10. 

A variable with a right superscript is an alternate notation 

associated with particular operations on intrinsic data types 

of AXES (for example, Hx • means "multiply the value of 'x* 

by the value of *x,H).  In other words, right superscripts rep- 

resent mathematical exponents. 

17 
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8.0  ABSTRACT CONTROL STRUCTURES 

An abstract control structure (ACS) is a control hiierarchy. 

An ACS can be generalized to be used in many particular systems, 

or it can be "tailored" to the needs of a specific application. 

An ACS can define one or more of its variables or mappings re- 

cursively.  In such circumstances, the recursive invocation of 

the mapping defines a new instance of variables associated with 

the ACS. 

Abstract control structures have three forms in ACS«: structures, 

operations, and functions.    

A structure is a relation on the set of mappings, iL.e., a 

set of tuples whose members are sets of ordered paiars.  We 

specify a structure by 

"STRUCTURE;-  y "«" S •(• x H);" 

declaration... 

definition... 

"SYNTAX:" user defined syntax-;" 

"END- S ";" 

user defined syntax: - connector^ y^ "•" SB^ "("x^")".. 

connector yw "-" 3Sn -("x ") n **n     n    n 
M \ il 

where x, y are variables or sets of variables whose values are 

in the same types as the members of the ordered paizrs that make 

up the mappings in the tuples of S; 

and r is a structure name; 

and connector, is a user-defined name, possibly erap-ty; 

and y. * Si***) is an unspecified mapping (see Sectiion 10.0 for 

use of uaer-defined syntax). 

The unspecified mapping names, used in definition statements within 

a structure, are nested subscripted names with resptect to the root 

module name. For example, 

18 C 
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STRUCTURE:  y - F(x) ; 

y = F1(g) AN£ g « F2(x); 

F, (h) AND h F2 (g); 
'l 

A structure is an ACS in which the root module's corresponding 

function is not specified and in which at least two other members 

of the same control hierarchy exist as unspecified functions. 

The STRUCTURE definitions for the three primitive control struc- 

tures are defined in Section 12.0.  The user-defined syntax can 

be used in the construction of pew structures, operations, or 

functions. 

By an operation, we mean a set of mappings which stand in a 

particular relation.  An operation results, mathematically, from 

taking particular mappings as the arguments (nodes) of a struc- 

ture.  In AXES, we define a particular operation by means of the 

following syntax: 

-OPERATION:"  y "«" L "(" x ");M 

declaration... 

definition... 

"END" L H;H 

where x, y are variables or sets of variables whose values are 

in the same types as the members of the ordered pairs which are 

the mappings, 

and L is an operation name. 

An operation is an ACS in which the root module has a corres- 

ponding mapping and in which all the members of the same control 

hierarchy exist as at least a mapping and at most a function #but 

not all are functions. 
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A universal primitive operation is an operation whose arguments 

can be values of any variable or set of variables.  In AXES, 

universal primitive operations are used with ACS definitions 

to construct new ACS definitions.  The universal primitive opera- 

tions in AXES are: 

The set of CLONE operations 

. (x,...x) = CLONE.(x) 
1   i       x 

here,"xw has the value of "x"; Mx" has the value of "x"... 
1 2 

"x" has the value of "x" 
i 

The set of IDENTIFY operations 

(x„ ,...) - IDENTIFY"*    (X,,...XJ I n, n #• • •  l    m 

where n,,... is a list of integer values in the range 1 to 

m and n. ^ n.; 

here, "x," has the value of Mx,",.. 
I1 x 

Mx " has the value of "x " ,n n 

For example. 

(g,h,i> - IDEHTIFY2#4#5 (a,b,c,d,e> 

means "g" has the value of "b" 

"h" has the value of "d" 

•1" has the value of "e" 

The set of K operations 

y - K constant (x) 

which maps any value of variable * "-^o a constant value. 
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For example, 

y * KTrue(x) 

meaiis "y" has the value True for any value of variable "x". 

AXES introduces a special value of any variable, REJECT.  The 

operation 

»•" KREJECT(X) 

is used, for example, to construct ACSs for error detection and 

recovery mechanisms. 

By a function we mean a set of mappings which stand in a par- 

ticular relation for which particular variables have been chosen 

to represent their inputs and outputs. Whereas structures and 

operations can be described as purely mathematical constructs, 

a function is a hybrid, consisting of a mathematical construct, 

i.e., an operation and a linguistic construct, i.e., an assign- 

ment of particular names to inputs, and outputs.  In AXES, we 

define a particular function by means of the following syntax: 

"FUNCTION:"  y "•" F "(" x ");" 

declaration... 

definition... 

"END" F ";" 

where x, y are particular variables or particular sets of vari- 

ables whose values are in the same types as the members of the 

ordered pairs which are the mappings, 

and F is a function name. 

A function is an ACS in which the root module has a correspond- 

ing mapping and particular variables and in which all nodes with- 

in the module's control hierarchy exist as mappings with particu- 

lar variables.  Note that our use of "function" is slightly 
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. 

different from what is meant by "function" in mathematics. For 

the latter notion we ute the term "mapping" throughout this re- 

port. 
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9.0  DECLARATIONS 

AXES has very simple name rules.  If a name is declared outside 

of any function, operation or structure definition, it is  the 

name of an operation, function, or constant. 

A declaration statement has two forms in AXES.  A WHERE state- 

ment is used to specify a variable as the name of a value of a 

data type. A PARTITION statement is used to specify nonover- 

lapping (i.e., mutually exclusive) exhaustive subsets of a sert 

of values. 

WHERE 

The names used within an ACS are either declared within an ACS 

definition by a WHERE statement, or are the names used for func- 

tions, operations, and types. 

In declaration., x is a variable, y%#... is a set of variables, 

T is a constant or variable data type name, and "S" concatenated 

with T denotes a plural type name. 

declaration.: -WHERE"! x "IS 

Yi 

x "IS 

J^HJ ["CONSTANT^ T 

[j"A"l JT,...      1 
l"AN"J lTj"OR"...T J 

\ 

"OF SOME TYPE" 

'ARE" / ["CONSTANT"] T"S" 

Ti...T"S" 

T,"S" "OR"...T "S' 

"OP SCME TYPES" 

"OF THE SAME TYPE1'53 

l 

1 ("y-,"...") 

'|"SOME TYPE" 
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In the example 

WHERE x IS A RATIONAL; 

WHERE y IS AN INTEGER; 

x e RATIONAL, 

y € INTEGER. 

In the example 

WHERE Zero IS A CONSTANT NATURAL; 

"Zero" represents a particular valae of data type NATURAL. 

Which particular value it represents is determined by the axioms 

or assertions the example statement might occur with (see Section 

15.0). 

In the example 

WHERE x IS AN ARRAY INTEGER; 

x is an integer member of an ARRAY member. 

It is sometimes useful to specify an operator that is capable 

of operating on data of more than one type. For example, an 

operation that sums several input arguments could accept both 

INTEGER and RATIONAL arguments.  It is even possible to write 

operations that will accept arguments of any type.  For example, 

an operation that compared two input arguments for equality could 

accept arguments of any type.  For example, 

WHERE X IS A NATURAL OR RATIONAL; 

declares "x" to be a variable capable of being defined to have 

either NATURAL values or RATIONAL values. 

In the example, 

WHERE X IS OF SOME TYPE; 

"xM is declared to be a variable whose values are of an unspecified 

data type. 

24 
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In the example 

WHERE x, y ARE INTEGERS; 

x e INTEGER, y e INTEGER, i.e., both "x" and "y" represent in- 

gers. 

In the example, 

WHERE x, y ARE SAME TYPE; 

"x" and "y" are declared to be variables capable <r>f being defined 

to have values of the same type, where the type iss unspecified. 

In the example, 

WHERE x IS (x.,x2); 

WHERE y IS A RATIONAL; 

x = (x,,x2), i.e., "(x,,x2)
H is the data structure* of "x". 

y = RATIONAL, i.e., "y" is a variable whose value ;is the set of 

RATIONAL values. 

PARTITION 

In declaration2, x is a variable or a set of variaibles enclosed 

in parentheses, ^y is variable or set of variables« whose values 

are members of the members of a partition of the »et of values 

of the variables that x represents. 

declarations = "PARTITION OF" x "IS' 
ANY PARTITION 
1.. . tv ,  ••,"...V  "!|M  tv.   »;•' 
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and 

true val exp: 

JF "("expj")"    I 
'F "("exp...'^."! 

exp F exp 

tv.:- true val exp 

"("true val expx ","...true val eaq>.")"j 

true val exp.   evaluates to the boolean value True,  and exp is 

in terms of x and values of x. 

The example 

PARTITION OF a IS 1a|a > 10, 
2a|a < 10, 
3a|a = 10; 

12  3 
declares the set a, a, a to be a partition of the set of which 

a is a member. 

The example 

PARTITION OF (a,b) IS 1(a,b)|a>b, 
2(a,b)|a<b; 

1      2 declares the set  (a,b),  (a,b) to be a partition of the set of 

which (a,b) is a member. 

In the use of a member of a partition, the left superscript can 

be distributed to each member of a set of variables, e.g., " (a,b) 

can be written MlaM, -1b". 
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10.0  DEFINITIONS 

A definition statement defines a particular control level by 

means of a mapping reference, a primitive definition statement, 

a user-defined definition statement, or a mapping assertion 

statement. 

In a definition, y,x are variables or sets of variables, and 

F is a structure, operation, or function. 

definition. 

-.  n _ it  p  M / li  y II v a 

primitive definition     „ n 

user-defined definition 

mapping assertion 

Primitive definition: =    4»«nition1 "AND" 

definition ";" n 

An example of a primitive definition for the function y = f(h) is 

y = A(b) AND b » C(d) AND d = E(h); 

user-defined definition: = connector, definition,... 

connector definition_ n n 

where a set of connectors is defined in a particular structure 

definition (see Section 8.0). 

An example of a user-defined definition is 

JOIN y = fx(g) 

WITH g - f2(a,b) AND (a,b) « f3(x); 

Section 13 provides more examples of the use of user-defined 
definitions. Examples of connector definitions are shown in 
Section 12.0. 
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mapping assertion: = "WHEREBY" y "••" exp";" 

A mapping assertion defines a mapping in terms of operations 

that have been previously characterized and in terms of bound 

variables. 

If a mapping assertion is used as a definition, 1the corresponding 

function has the set of variables referenced in tthe mapping as- 

sertion as input variables.  For example, 

y = F1(a,b) might correspond to F,(a,b) • a  + a/b + 1. 

In this case, we can write 

WHEREBY y = a2 + a/b + 1 

to define the mapping F,. 

Examples of mapping assertions are: 

WHEREBY 2 » g2 + 1; 

WHEREBY (c,d) « (3,4); 

WHEREBY 2 • Sum(Prod(a,b),a); 

WHEREBY e « g(k(c)); 
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11.0  EXPRESSIONS 

Expressions in AXES are similar to expressions of most program- 

ming languages. 

value 

x 

F(exp) 

exp:= iexp F exp 

(exp) 

exp,... 

where F is an operation or a function name and 

x is a variable. 

The following is a valid expression: 

-a2 + b/(c + f(x)) +4 

When operations are used with prefix notation, operator hierarchy 

and order of evaluation are inherently determined. 

For convenience, AXES permits a number of the primitive or auxili- 

ary operations defined on intrinsic data types (c.f. Appendix IV) 

to be written in terms of the customary prefix or infix symbols. 

The correspondences between these operations and symbols is given 

in the following table: 

Operation 

Or, Per 

And, fand 

Not, Pnot, loop, Ropp 

Same, Ident, Equal, ?Equal?, 
?legual?, ?Requal? 

?>?, ?I>?, ?R>? 

Sum, Isum, Rsum 

Idiff, Rdiff 

Prod, iprod, Rprod      -9 

Symbols 

! 

& 

prefix - 

> 

+ 
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Operation (con't) Symbols (con't) 

Rdiv / 

Cone !! 

Given these symbolizations, "_>", "<", and "<" can also be intro- 

duced in the usual way as abbreviations for combinations of these 

symbols.  The symbol "+" can also be used as a prefix to indicate 

the identity mapping, and the symbol "**" can ba used to indicate 

exponents.  All symbols in this table are infix symbols, except 

for the one prefix symbol indicated. 

Operator Precedence 

The meaning of expressions that contain multiple operators is 

determined by the relative priority or precedence of the opera- 

tors and by a property of operators called associativity. 

The expression 

a+b*c 

for example, means 

a+(b*c) 

because "*" has higher precedence than "+".  In general, operators 

of higher precedence take priority over operators of lower pre- 

cedence. The precedence of AXES operators is as follows: 

Highest 

** prefix + - 

* / 
+ - 

& 

Lowest 
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Operator Associativity 

If an expression contains multiple operators of equal precedence, 

the meaning of the expression is determined by the associativity 

of the operators. All prefix operators and the"**" infix operator 

are right-associative, and all other operators are left-associa- 

tive. 

Left-associative operators give priority to other operators of 

equal precedence to their left, while right-associative operators 

give priority to operators of equal precedence to their right. 

For example, 

a+b+c-d 

means 

((a+b)+c)-d 

while 

a**b**c 

means 

a**(b**c) 

As in most programming languages, parentheses can be used to 

clarify the meaning of expressions and to overrule the precedence 

and associativity of operators. 
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12.0  PRIMITIVE ABSTRACT CONTROL STRUCTURES AS STRUCTURES 

The primitive abstract control structures of HOS can be defined 

as structures.  The structure primitive composition, for example, 

js the relation that holds among three mappings Cn, Cn,, Cn2 

if Domain(Cn) = Domain(Cn2),   Range(Cn) * Range(Cn,), and Do- 

main (Cn,) « Range(Cn2), and if, for all x, y such that y = Cn(x), 

there is a g e Domain(Cn,) such that y = Cn,(g) and g » Cn2(x). 

In AXES, we define the particular primitive composition struc- 

ture by means of the following syntax. 

STRUCTURE:  y = Cn(x); 

WHERE x, y, g ARE OF SOME TYPES; 

y • Cnx(g) AND g = Cn2(x); 

SYNTAX:  JOIN y • Cn^g) WITH g • Cn2(x); 

END Cn; 

The structure class partition is the relation that holds between 

three mappings, Cp, Cp,, Cp2if Domain(Cp) * Domain(Cp,) X Do- 

main (Cp-) , Range(Cp) * Range(Cp,) X Range(Cp-)# and,if for all 

x, y such that y • Cp(x), there is a (y«#y«) • Y  and a (x,,x2) « x 

such that y, • Cp,(x,) and y2 « Cp2(x2). 

In AXES, we define the particular class partition structure 

by means of the following syntax: 

STRUCTURE:  (y^Vj) « CpU^); 

WHERE x1# x2, yx, y2 ARE OF SOME TYPES; 

yl * CPl(xl> AN0 y2 
s  Cp2(x2); 

SYNTAX:  INCLUDE y±   » Cp1(x1) ALSO y2 - Cp2(x2); 

END Cp; 
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The structure set partition is the relation that holds betweean 

three mappings, Sp, Sp., Sp2 if Domain(Sp) = Domain(Sp.)U 

Domain(Sp2) and Domain(Sp1)D Domain(Sp2) = 0,  and Range(Sp) =» 

Range(Sp.) u Range(Sp0) and if, for all x, y such that y * 
1 2 Sp(x),  there is either a y • Sp ( x)  or a y • Sp( x). 

In AXES we define the particular set partition structure by me^tns 

of the following syntax: 

STRUCTURE:     y = Sp(x); 

V7HERE  X,   y ARE  OF  SOME  TYPES; 

Xy =  Sp1(
1x)   AND Zy =  Sp2(

2x); 

PARTITION OF   (x,y)   IS  ANY  PARTITIONS- 

SYNTAX:     EITHER *y = Sp1(
1x)   OTHERWISE  2y =  Sp2(

2x); 

END Sp; 
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13.0 THE USE OF STRUCTURES, OPERATIONS AND FUNCTIONS 

In the following examples, the data types referenced are 

intrinsic data types of AXES (Appendix IV) unless otherwise 

indicated. 

An example of an operation using the Cn structure is: 

OPERATION:  y - Transform (a,b) 

WHERE a,b ARE RATIONALS; 

»•THERE y,g ARE INTEGERS; 

JOIN y « A(g) WITH g * B(a,b); 

END Transform; 

In this example, the structure input variable has been replaced 

by a list of variables. 

A function can include the use of structures and operations. 

For example, function G uses the Cn structure and the Trans- 

form operation. 

FUNCTION:  c • G(d); 

WHERE h IS A RATIONAL; 

WHERE C.,C.ih1#h2,d ARE INTEGERS; 

WHERE c - (c1,c2); 

WHERE h « (hx,h2); 

JOIN c « R(h) WITH h = Transform(d); 

INCLUDE cJL - T(hx) ALSO c2 «* Wttu); 

END G; 

An example of a function using the Sp structure is: 

FUNCTION:  y « Decide (x) ; 

WHERE x,y ARE INTEGERS; 

EITHER y - A( x) OTHERWISE y « B(2x); 

PARTITION OF x is lx |x<10, 2x |x>^10; 

END Decide; 
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In function S, function Calculate begins at time b «and 

completes at time a. Here the execution time span cof 

Calculate is defined by function Clock. We assume Hiere, 

an extrinsic data type, Timeslot, where x and y are; Time- 

slots whose values are integers and ar. extrinsic datta type, 

TIME. 

FUNCTION:  (a,ya) = S(b,xb); 

WHERE y,x ARE TIMESLOT INTEGERS; 

WHERE a,b are TIMES; 

INCLUDE a = Clock (b) ALSO ya = Calculate(x.); 

END S; 

A complete system specification is defined as a struicture of 

functions whose lowest level functions are primitives 

operations on the data types represented by the variables 

of those lowest level functions.  An example of a ccsamplete 

system definition is system F. The lowest level functions 

of system F, (i.e., F. and F-) are described in terjcas of 

primitive operations on RATIONALS. The intent of swastem F 

is to perform two independent functions. 

FUNCTION:  (y^yj) "• Ffe.tX*)! 

WHERE y.,y2#xlfx2 ARE RATIONALS; 

INCLUDE yx • Fj^x^ ALSO y2 * F2(x2>; 

END F; 

FUNCTION: F^x^; 

WHERE y1#x1,g ARE RATIONALS; 

JOIN WHEREBY yx * g+1 WITH WHEREBY g ***3yj.» 

END P.J 
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FUNCTION: y2 = F2(x2); 

WHERE Y2
,x2  ARE XAT10®kLS'' 

EITHER WHEREBY y2 
= ^'   OTHERWISE WHEREBY y 

PARTITION OF x2 is a|x2<10, b|x2>10; 

END F2; 

b3; 

The control map for System F is shown in Figure 13.1. 
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14.0  FUNCTION FAILURE 

Failure of a function means that none of its outputs are 

defined. 

If a function fails, the failure could propagate bauck up to 

the function that referenced it, etc., all the way Jback to 

the top of the system, causing the system to fail. 

To permit orderly recovery from errors, AXES provides a 

structure in which provision for failure can b^ expressed. 

STRUCTURE:  w • FAIL(x,y); 

WHERE x,y,w ARE OF SOME TYPES; 

JOIN w = Fail.fw^y) WITH (w,y) Fail-(x,y); 
1  1  1       11     d 

EITHER ^w^y) = Fail. (1(x,y)) OTHERWISE 
11     * J2 

WHEREBY 2w = REJECT, 2y = 2y; 
1 1 

PARTITION OF ~{x,y,w,y) IS 
1 1 

(x,y,w,y)|(x NOT= REJECT, w NOT= REJECT), 
11 1 

2(x,y,w,y)|(x=REJECT,w=REJECT) ; 
11 1 

JOIN (W * Fail,  ^x^y^y) WITH 
11       112  1  2  3 

(1yi1y) - CLONE0(
1y) AND *x = CLONE.(Xx); 

2  3        * 1       L 

INCLUDE Xw = Fail,   (1x,1y) ALSO Xy = CLONE.(^y) ; 
1      il.   1  2       1       L      3 

2 
INCLUDE Xw = Fail. (1w,1y) ALSO 2w = IDENTIFY*((2w, 2y) ; 

il     1     1 11 

PARTITION  OF   (w,y,w)    IS 
1   1 

1(w,y,w)|w  •  REJECT, 
11 1 

(w,y,w)|w NCT=  REJECT; 
1   1 
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JOIN K  = Fail   (ly)   WITH ly  = IDENTIFY? (Hr^y) ; • 
2 1. 1 lx  * 

SYNTAX: ?I:  w = Failj   (x,y) FAILURE w = Fail.  (y) ; 

END Fail; 

Using the Fail structure, a function definition statement such 

as 

z = F(x,y,a) FAILURE z • G(y,a); 

implies if F(x,y,a) fails, G(y,a) will be used to define the 

value for z.  If G(y,a) might fail, we can write: 

z = F(x,y,a) FAILURE z = G(y,a) FAILURE z * H(a); 

If H(a) might fail, the failure propagates back to the controller 

function which either uses a Fail structure of its own or 

further propagates the error back up the system- 
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15.0  DATA TYPES 

Abstract Types 

The meaning of a type of value is determined by the set of opera- 

tions that can be performed on the values of that type. For ex- 

ample, what it means to be an integer is determined by the set 

of operations that can be performed on integers. 

Most programming languages define a limited set of data types 

and a set of operations on those data types. More advanced lan- 

guages allow the programmer to define new data types in terms 

of existing or previously defined data types. Because these de- 

finitions define the new data types in terms of base types, how- 

ever, the newly defined types usually exhibit the properties of 

their base types. For example, if the type department__numbers 

is defined in terms of the type INTEGER, department_numbers are 

likely to be permitted as operands of arithmetic operators. 

In AXES, new data types can be defined simply in terms of the 

operations that are to be performed on the data (GUT75)(Appen- 

dixes III and IV). To specify a data type in AXES, we use the 

following syntax: 

"DATA TYPE:" name ";" 

"PRIMITIVE OPERATIONS;" 

primitive operations... 

"AXIOMS;" 

declaration... 

assertion (about a type)... 

"END" name";" 

where 

(1) name is the abstract data type name. 

(2) the primitive operations are not defined in terms of other 

operations, but in terms of each other. As with all operations, 

the name of each primitive operation is known throughout the 
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system specification, and each primitive operation can be refer- 

enced from within any ACS and from within other data type defini- 

tions. 

primitive operations typename. "=" P. " (" typename.,..."); " 

where typename. is a data type name in lower-case characters 

and k is an integer, possibly empty, and P. is a primitive 

operation name. 

(3) An assertion (about a type) in AXES is a true statement about 

the equality of two ACSs in which all the nodes are operations. 

Each ACS is defined in terms of primitive operations of the data 

type of interest or of previously characterised primitive opera- 

tions on another data type. The arguments of a mapping can be 

values of a type as an alternate notation for the KcoNSTANT °Pera~ 

tion (Section 8.0) or bound variables. The set of assertions 

(about a type) completely characterize the type of interest (Ap- 

pendix III) . 

assertion (about a type) .1 definition. F,,(,,exp1.w)H 
ii.ii 

definition2 

exp0 

where exp. is an exp in terms of previously characterized or 

primitive operations, variables that represent values of pre- 

viously characterized data types or the type of interest, and 

values of previously characterized data types or the type of 

interest; F is an operation name; definition, is in terms of the 

same objects as exp.; and either F or at least one of the opera- 

tions of exp. are primitive. 
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An example of a data type specification is data type STACK. 

DATA TYPE:  STACK; 

PRIMITIVE OPERATIONS: 

stack1 = Push(stack2,integer1); 

stack, = Pop(stack2); 

integer1 = Top(stack,); 

AXIOMS: 

WHERE Newstack IS A CONSTANT STACK; 

WHERE s IS A STACK; 

WHERE i IS AN INTEGER: 

Top(Newstack) -  REJECT; 

Top(Push(s,i)) = i; 

Pop(Newstack) = REJECT; 

Pop(Push(s,i)) = s; 

END STACK; 

The entire set of statements constitutes the definition of the 

type STACK. The first line and last line give the name of the 

abstract type, the lines between "DATA TYPE" and "AXIOMS" are 

the complete set of primitive operations that receive or define 

values of the type STACK. 

The names STACK and INTEGER that appear within the primitive 

operations are the names of types (INTEGER is a previously de- 

fined type; STACK is the type we are defining). Only type names and 

primitive-operation names appear within the primitive-operation 

list. The lines following the word AXIOMS are axioms, or asser- 

tions, about the behavior of the primitive operations. Any actual 

implementation of the primitive operations must satisfy these 

axioms.  If it does not, the implementation is invalid and does 

not meet the specification. Note that this method of specifying 

a STACK does not bias the final implementation toward the use 

of any particular mechanism such as linked list, array, etc. 
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•The names "i" and "s" that appear within the axioms represent asay 

value of any variable of the required type.  Because "i" is de- 

clared to be an INTEGER variable, it represents values of INTEGER 

variables. Similarly,"s"represents values for variables of type 

STACK.  On the other hand, "Newstack" represents a particular 

value that "s" can represent. 

Within a set of axioms, a variable of a given data type can be 

used only in contexts that require that same data type. 

Each axiom must be true for all possible values of the variables 

described.  For example, the second axiom means that for any 

STACK s, and any INTEGER i, the resulting values of the nested 

operations Top(Push(Stack,i)) must be equal to the value i. 

(Pushing i onto s and then taking the top item off of the STACK 

produced by the Push, must yield value i.) 

Intrinsic Types 

Because certain data types are common to a wide range of system 

specifications, they are predefined by AXES.  This means that 

the system designer does not have to define these types.  For 

AXES, Appendices IV and V contain the intrinsic data type defini- 

tions. 

intrinsic types: 

boolean 
natural 
integer 
rational 
Iproperty (of T)( 
set (of T) 
line        I 

value; 

boolean value 
natural value 
integer value 
rational value 
|property (of T)value 
set (of T) value 
line value 
extrinsic value 
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boolean value: True 

False 

natural value: 

integer value: { } natural 

rational value: 
{integer«, 

integer..integer2 }- E
H integer] 

property (of T) 
value: "PROPERTY OF" t "IN" T"|"true 

val exp. 

set (of T) value 
{value,/...) 

-SET OF" t "IN" T "|" true val exp 
1; 

line value: 'any finite string of symbols 
possibly empty* 

Extrinsic data type values are defined as "'CONSTANT1 T" using 

a declaration, statement (Section 9.0). 
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16.0  DERIVED OPERATIONS 

In AXES, we specify the behavior of an operation wit&out speci- 

fying its decomposition by writing it as a derived operation. 

The meaning of a derived operation can be determined in terms 

of previously characterized operations (i.e., derived from 

primitive operations of a type). 

In AXES, we specify a derived operation implicitly by means 

of assertions (about an operation) that describes the behavior 

of the operation with respect to other already-defined operations. 

The existence of a derived operation of some types mxaast be prov- 

able mathematically from the existence of the primitive opera- 

tions and the axioms of those types. To specify a derived opera- 

tion in AXES, we use the following syntax. 

"DERIVED OPERATION:'"  y " = " D " (" x ") ; * 

declaration... 

assertion(about D)... 

"END" D ";" 

where x,y are variables or sets of variables and D is a 

derived operation name. 

(definition,] definition. 

assertion(about D) : -  to" ("•xpjT  "•"  F2" ("exp2
M)Mj 

> 

where F. is D or an operation of the types D is derived from; 

exp« is an exp in terms of the derived operation, D, ©r opera- 

tions of the types D is derived from and values of tbte types D 

is derived from; definition, is in terms of the derived operation 

D or operations of the types D is derived from and values of the 

type D is derived from.  For example, a derived operation taken 

from Appendix IV is 
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DERIVED OPERATION:  integer3=IGCD(integer^ integer 2>; 

WHERE ij/ij ARE INTEGERS? 
Abs(IGCD(ilfi2)) - GCD(Abs(i2,i2)); 

Sign(IGCD(i1,i2)) • True? 

END IGCD; 
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17.0  RECURSION VS. ITERATION 

Because AXES does not permit multiple definitions of a given 

variable, the common control statements of programming languages 

have no meaning in AXES.  For example, a statement of the form 

WHILE a<b DO ... END; 

has no meaning in AXES because a<b always has the same value. 

(The values of a and b cannot change.) 

Traditional control statements, such as WHILE, are normally 

used to express functions as iterative algorithms.  In AXES, 

these iterative algorithms must either be expressed using 

control structure definitions or written as recursive func- 

tions. 

The following text shows a simple iterative algorithm written 

in PL/1: 

DO WHILE(i,n); 

a(i) = F(b(i)); 

i » g(i); 

END; 

In AXES, the same problem is expressed using functions without 

giving more than one definition of any variable. 

This PL/1 formulation cannot be tested for interface correctness 

For example, we do not know if a(i) is defined more than once, 

or if a(i) is ever defined.  This uncertainty could have serious 

consequences on system implementation; but we can avoid the 
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problem altogether in AXES by formulating the function differ- 

ently.  Suppose we wished to establish the values t:hat "a" 

represents where a - fa.,... a.). 

FUNCTION; a = H(b); 

WHERE a - (a^a^; WHERE b = (b.,b2); 

INCLUDE ax - F^b^ ALSO a2 = G(b2); 

EITHER a2 = 
K
REJECT

(lb2) 0THERWISE 

a2 = H(*b2) 

PARTITION OF b2 IS 
1b2|b2 m  REJECT, 

^b2|b2 NOT = REJECT; 

END H; 

The control map for function H is 

(a|a » (a1,a2)} 
H(b) 

{b|b » (blfb2)} 

a2 = K( b2)(b2|b2c*} 
a, « H(2b,  ~ k     ) 

2 2(b2|b^} 

In the AXES formulation, any size data structure is inherent 

in the specification, however, a and b possess the same 

structure.  If "a" and "b" are defined as variables and H is & 

primitive operation on data type array, then the above speci- 

fication can be expressed simply as "a = H(b)". 
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18.0  CONCLUDING REMARKS 

In this report we have been careful to differentiate between the 

name of a object and the object, itself. 

In AXES, a name (variable) always represents no more than one 

object. The objects are members of a hierarchy whose relation- 

ship is that of control. AXES syntax, AXES abstract control 

structures, AXES abstract data types, and AXES systems are all 

based on the methodology of HOS.  In this version of AXES, we 

have concentrated on a syntax which will provide a basis for a 

system to be explicitly defined in such a way or to be automati- 

cally analyzed for interface correctness. 

In the future we hope to provide more building blocks (i.e. user- 

defined abstract control structures and abstract data types) in 

order to facilitate further the communication between users in 

the process of specifying particular systems and systems in gen- 

eral. 
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APPENDIX I 

PRELIMINARIES OF HOS 

Trees and Functions 

Using the HOS approach, software systems can be developed with 

the aid of simple mathematical concepts and a set of software 

engineering axioms.  In this Appendix, the required mathematical 

concepts are described. 

The two mathematical concepts required in order to describe HOS 

are the tree and the function.  The tree is a structure comprised 

of a finite number of nodes which are connected by branches as 

shown in Figure AI-1. 

Figure AI-1 

An Example of a Tree Structure 

A branch may be interpreted as entering a node (from above the 

node) or leaving a node (from below).  The unique node at the 

top of the tree that has no branches entering it is called the 

root of the tree.  A node that has no branches leaving it is 

called a leaf of the tree.  It should be noted that all nodes 

otner than the root have exactly one entering branch. 

A root is considered to be at level 0 of the tree (see Figure 

AI-2). As one starts at the root and traverses a path to a leaf. 

Excerpted from Hamilton, M. and Zeldin, S, "Integrated Software 
Development System/Higher Order Software Conceptual Description", 
Version 1, Higher Order Software, Inc., Cambridge, MA, Nov. 1976. 
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each successive node defines the next level of the tree. 

root 

leaf 

leaf leaf leaf 

«• level 0 

«• level 1 

* level 2 

«• level 3 
leaf leaf 

Figure AI-2 

Tree Levels 

If a branch leaves node A (Figure AI-3) and enters node B, 

then node A is the parent of node B, and node B is an offspring 

of node A.  (In Figure AI-3 node C is also an offspring of node 

A.) 

B 

Figure AI-3 

Parent-Offspring Relationship 

A nodal family is a particular parent node and all of its off- 

spring (see Figure AI-4). 

If there exists a sequence of nodes n,,n«#...,n, ,   such that for 

every i, n. , is an offspring of n., then each n.+, is a des- 

cendant of n,.  A particular parent node of the tree together 

with all of its descendants and connecting branches is the sub- 

tree defined by the given parent. 
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PARENT NODE 

A NODAL 
FAMILY 

A SUBTREE 

OFFSPRING 
NODES 

Figure AI-4 

Tree Substructures 

If a and 0 are set elements (from either the same or different 

sets), then "(a,ß)" denotes the ordered pair consisting of o and 

6 in that order.  (Thus, the ordered pair (a,8) is not the same 

as (8,a) except for the case where a and $ are the same elements.) 

If two sets, X and Y, are given, and "x" and "y" repi sent arbitrary 

elements of X and Y, respectively (i e., "x" and "y" are variables), 

then any set of ordered pairs of the form (x,y) is a relation 

between X and Y.  For example, if X • {1,2,3,4,5,6} and Y = {m, 

s,e,w}, then one possible relation between X and y is R • {(4,m), 

(3,s), (4,w)}. 

The set of left elements of the relation is called the domain, 

and the set of right elements, the range.  In the above example, 

the domain is {3,4}, and the range is {m,s,w}. 

A relation is a function when each element of the domain has only 

one corresponding range element.  If f is a relation between X 

and Y, and f is also a function, then we say that "f is a function 

from X into Y" (usually written y = f(x)).  An example of a func- 

tion is 

f = {(l,n), (2,s), (4,m), (6,e) } 

as illustrated in Figure AI-5. 
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RANGE   OF   F DOMAIN   OF   F 
/ 

DOMAIN OF 
INTENDED F 

Figure AI-5 

Illustration of a Function from X into Y 

In the sections that follow, the variable that represents the 

domain elements is referred to as the input variable, and the 

variable that represents the range elements is referred to as 

the output variable.  Individual domain and range elements may 

be called inputs and outputs, respectively. 

Modules and Nodal Families 

In HOS, the decomposition process for a system results in a tree 

structure.  At the start of the decomposition process, the en- 

tire system is represented by the root of the tree which, hope- 

fully, represents the requirements for the system.  This descrip- 

tion, however, has many implicit (hidden) requirements.  In order 

to explicitly arrive at the complete description of the require- 

ments of the system, the root is decomposed by replacing it by 

a nodal family, which represents the decomposition of the root. 

This decomposition process, that of replacing a function by its 

nodal family, can be continued until the entire system has been 

explicitly specified to whatever detail is required or desired. 
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It may turn out that during the decomposition process, a require- 

ment is shown to be erroneous or missing. In such a case, an 

iteration of the system description is required. 

The parent node of the nodal family controls its offspring. 

When referring to this control relationship, the parent node will 

be called a module, and its offspring will be called functions. 

The offspring of the nodal family are the functions required to 

perform the module's corresponding funct^ -a  (MCF) (i.e., the 

function that the nodal family replaces. 

The resulting tree represents the system where the leaves rep- 

resent, in an abstract machine sense, the machine "instructions" 

that are to be actually performed; the intermediate nodes rep- 

resent control with respect to the performance of these leaves. 

It can be shown that the HOS axioms provide rules for the way 

that a nodal family can be constructed (HAM76). 
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AXIOMS OF HOS 

DEFINITION:  Invocation provides for the ability to perform a function. 

AXIOM 1:    A given module controls the invocation of the set 
of functions on its immediate, and only its immediate, 
lower level. 

DEFINITION:  Responsibility provides for the  ability of a module to 

produce correct output values. 

AXIOM 2:    A given module controls the responsibility for 
elements of only its own output space. 

DEFINITION: An  output access right provides for the ability to locate a 

variable,  and once located,  the ability to place a value in  the 

located variable. 

AXIOM 3:    A given module controls the output access rights to 
each set of variables whose values define the 
elements of the output space for each immediate 
and only each immediate, lower level function. 

DEFINITION: An  input access right provides for the ability to locate 

a variable, and once located,   the ability to reference the 

value of that variable. 

AXIOM 4:    A given module controls the input access rights to each 
set of variables whose values define the elements of the 
input space for each immediate, and only each immediate, 
lower level function. 

DEFINITION:  Rejection provides for the ability to recognize  the 

improper input element in  that if a given input element is not 

acceptable, null output  is produced. 

AXIOM  5: A given module controls the rejection of invalid 
elements of its own, and only its own, input set. 

DEFINITION: Ordering provides for the ability to establish a relation 

in a set of functions so that any two function elements are comparable 

in that one of said elements precedes  the other said element. 

AXIOM 6:    A given module controls the ordering of each 
tree for the immediate, and only the immediate, 
lower level. 
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PROPERTIES OF THE PRIMITIVE CONTROL STRUCTURES* 

FUNCTIONAL DECOMPOSITION 

While a function can be decomposed in many ways, the HOS axioms 

provide rules for the construction of nodal families (i.e., the 

decomposition of a function).  From the axioms, three primitive 

control structures are derived which are used for functional de- 

composition (HAM76b).  These control structures are composition, 

set partition, and class partition. 

Composition is illustrated in Figure AII-1.  In order to perform 

f,(x), the function f2 must first be applied to x which results 

in output z.  z then becomes an input to f, which produces the 

desired range element of the overall function f,. 

y = f,(x) 

Figure AII-1:  An Example of Composition 

It is important to observe the following characteristics of com- 

position (characteristics are explained with respect to the ex- 

ample in Figure AII-1): 

(1) One and only one offspring (specifically f2 in this ex- 

ample) receives access rights to the input data, x, from 

module f,. 

(2) One and only one offspring (specifically f- in this ex- 

ample) has access rights to deliver the output data, y, 

for module f,. 

*  Excerpted from Hamilton, M. and Zeldin, S.,"Integrated Software 
Development System/Higher Order Software Conceptual Description", 
Version 1, Higher Order Software, Inc., Cambridge, MA, Nov. 1976. 

AII-1 

HIGHER ORDER SOFTWARE. INC • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900 



(3) All other input and output data that will be produced by 

offspring controlled by f, will reside in local variables 

(specifically "2" in this example). Local.variable, "2", 

provides communication between the offspring, f2 and f_. 

(4) Every offspring is specified to be invoked once and only 

once in each process of performing the parent modules cor- 

responding function (MCF). 

(5) Every local variable must exist both as an input vari- 

able for one and only one function and as an output vari- 

able for one and only one different function on the 

same level. 

Additional examples of composition are given in Figure AII-2 and 

Figure AII-3. 

y - f3(h) 

y- f0(x) 

Figure AII-2:  Composition with Three 
Functions on One Level 

y • fn(x) 

y * f4(h) 

Figure AII-3:  Multilevel Composition 
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Set partition, which involves partitioning of the domain, is 

illustrated in Figure AII-4.  In this example, the set which com- 

prises the domain is partitioned* into two subsets.  For set 

partition, only one of the offspring will be invoked for each 

performance of the MCF at f, (the determination being based on 

the value of "x" received) and that offspring will produce the re- 

quired range element for its parent module when it is performing. 

y - f i (x) 

y - f,(x 
(x|x > 0} 

y = f0(x 
{x|x < 0} 

) 

Figure AII-4:  An Example of Set Partition 

The following characteristics with respect to set partition should 

be observed: 

(1) Each offspring of the module at f, is granted permis- 

sion to produce output values of "y"- 

(2) All offspring of the module at f. are granted permis- 

sion to receive input values from the variable x • 

(3) Only one offspring is specified to be invoked per input 
value received for each process of performing its MCF, 
i.e., only one offspring has a state change for a given 
state change of the parent module. 

(4) The values represented by the input variables of an off- 

spring's function comprise a proper subset of the domain 

of the function of the parent module. 

(5) There is no communication between offspring. 

Partitioning implies the subdivision of the original set into 
non-overlapping (i.e., mutually exclusive) subsets. 
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Alternative approaches to the set partition illustrated in Fig- 

ure AII-4 are presented in Figures AII-5 and AII-6. 

Figure AII-5: Set Partition with Three 
Functions on One Level 

y - f(x) 

(y|x < 0} 
) 

) 
(x|x « 0} 

Figure AII-6:  Multilevel Set Partition 

Class partition is illustrated in Figure AIJ-7.  While set parti- 

tion involves partition of the domain into subsets, class parti- 

tion involves partition of the domain variables into classes and 

the partition of the range variables into classes.  In the ex- 

ample, it is assumed that the domain variable has an associated 

data structure comprised of two parts, "x." and "x ".  Likewise, 

the range variable has an associated data structure with the same 
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number of classes as the domain's data structure.  (As an exansgple 

of such a structure, consider the domain to be the complex nunabers; 

the range to be polar coordinates.  Then, for a given value of the 

domain variable (i.e., a given complex number), "x," would represent 

its real part and "x2" its imaginary part.  Consequently, the -vari- 

able is partitioned into two separate classes. x and "x~", such 

that elements associated with "x, " are the input elements that one 

offspring can access and the elements associated with "x2" are the 

input elements that the other offspring can access.  The range 

structure is Dartitioned in a similar manner. 

(y-i  >y«,) • f(x,, x0) 

y1 - h<«1) y2 = g(x2) 

Figure AII-7:  An Example of Class Partition 

The following characteristics with respect to class partition 

should be observed. 

(1) All offspring of the module at f are granted permission 

to receive input values taken from a partitioned vari- 

able in the set of the parent MCF domain variables, su&ch 

that each offspring's set of input variables are non- 

overlapping and all the offspring input variables col- 

lectively represent only its parent's MCF input vari- 

ables. 

(2) All offspring of the module at f are granted permission 

to produce output values for a partitioned variable im 

the set of the parent MCF range variables, such that 

each offspring's set of output variables are non-over- 

lapping and all the offspring's output variables col- 

lectively represent the parent MCF output variables. 
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(3) Each offspring is specified to be invoked such that for 

each change in state of its parent, all offspring under- 

go a state change. 

(4) There is no communication between offspring. 
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APPENDIX III 

ALGEBRAIC SPECIFICATION OF ABSTRACT DATA TYPES 

An algebra is an ordered pair[Z,<jo] , where I is a non-empty class 

of non-empty sets, and u is a non-empty class of operations on 

the grandmembers (i.e., members of members) of Z.  The members 

of Z are called categories of the algebra, and the members of 

b) are called the primitive operations of the algebra.  A parti- 

cular algebra can be specified by giving a category specifica- 
2 

tion, an operational specification, and an axiom specification. 

A category specification lists or defines the members of I.  An 

operational specification gives the domains and ranges of the 

members of w as Cartesian products of the members of Z.  An 

axiom specification is a non-empty set of formal statements that 

characterize the interactive behavior of the members of u and 

the grandmembers of Z.  Algebras can be classified according 

to the constraints that we choose to put on one or more of their 

category, operational, or axiom specifications. 

An algebra [Z,OJ] is said to be homogeneous, if Z contains exactly 

one non-empty member.  The most familiar kind of homogeneous 

algebra is probably the group.  A non-empty set G is said to be 

a group with respect to a binary operation Mult, called the group 

multiplication, defined on G, if (1) G is closed under Mult , 

(2) Mult is associative, (3) there is an element in G that is 

neutral with respect to Mult, and (4) every element of G has an 

inverse, which produces the neutral element under Mult (c.f. 

(FUN74)).  We can specify a group G formally as a homogeneous 

algebra as follows: 

Birkhoff (BIR70) and Guttag (GUT75) call these phyla.  The cate- 
gories or phyla of a type algebra, which we will consider later, 
we will call types. 

2 
Guttag (GUT75) calls this the syntactic specification, but this 
term is somewhat misleading. 

JThe uniqueness of the image under Mult is also required, but this 
is guaranteed by specifying Mult as a mathematical function, i.e., 
mapping, as in (i 2). 
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(I) Group G - [l, ü)] : 

(1) Z:  G, Neut e G 

(2) 10:  Mult:  G x G •*• G 

Inv:   G -*• G 

(3) Axioms:  1.  Mult(g,,Mult(g2'93)) = Mult«Mult(g1,g2) ,g3) 

2. Mult(Neut,g) = g 

3. Mult(g,Neut) = g 

4. Mult(g,Inv(g)) = Neut 

In this example, (1) is the category specification of the group 

G, (2) is its operational specification, and (3) iüs its axiom 

specification. 

The category specification (1) says that the algeäora G  contains 

exactly one set G and that there is an element Nesnt in G.  The 

operational specification (2) says that the algetea G  contains 

two primitive operations.  The first of these (Jfta&t) produces a 

member of G from an ordered pair of members of G, sand the second 

(Inv) produces a member of G from a member of G. 

The axiom specification (3) specifies the interactive behavior 

of the members of the set specified in (1) and thse primitive op- 

erations specified in (2) .  Every axiom should be interpreted 

as being universally quantified over each of its firee variables. 

Axiom 1 says that Mult is an associative operatic^..  Axioms 2 

and 3 taken together say that Mult has no effect, if Neut is one 

of its arguments.  These axioms are often combined as a single 

axiom of the form: 

(4)  Mult (Neut,g) = Mult (g,Neut) = g, 

but we have given them as separate axioms to ensur-e that every 

axiom uniformly contains exactly one equality symbol. Axiom 4 

says  that Mult maps every member of G and its  inverse onto  the 
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neutral element.  Together Axioms 1-4 provide the primitive 

operations in w with the properties required to make the set in 

I a group. 

Other familiar examples of homogeneous algebras are the modules, 
4 

rings, and fields.  A group is said to be a module,  also called 

an Abelian group, with respect to its group operation, if that 

operation is commutative .  A ring is a non-empty set on which 

two operations, Sum and Mult, are defined such that it .is a module 

with respect to Sum, and Mult is associative and distributive in 

both directions over Sum.  A field is a ring in which Mult is 

commutative and every element other than the neutral element with 

respect to Sum has an inverse with respect to Mult. 

We can formalize these notions very easily in terms of the 

framework being developed here.  To get a module we simply add 

the axiom: 

(5) Mult (g1/g2) = Mult (g2'91) 

To get a ring, we first replace "Mult" throughout (I) and Axiom 5 

with "Sum", "Neut" with "Zero", and "Inv" with "Opp", meaning 

opposite.  These names are changed simply to bring them more in 

line with our intuitive interpretation of Sum as a kind of ad- 

dition.  We alsc replace "G" with "R", "G" with "R", and "g" 

with "r".  Then we put "Mult" back into (2), we put Axiom 1 back 

into (3), and we add the two axioms 

Mult (r1,Sum(r2,r3) ) = Sum 'Mult(r, ,r2) # Mult (r^,r-)) 

Mult (Sum(r1,r2) ,r-) = Sum dlult(r, ,r3) , Mult (r2,r3)). 

4 
It should be emphasized that this mathematical use of the term 
"module" is entirely unrelated to what is meant by the term 
"module" in systems analysis, particularly in HOS.  We use it here 
only as an example and will not use it outside of this Appendix- 

Modules are customarily written with additive operations, like 
Sum, but, strictly speaking, any Abelian group is a module, since 
the name of any particular operation is arbitrary.  See Note 4. 
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This gives us the following specification for a ring 

Ring R = [E,o>] 
Z: R,   Zero e R 

u: Sum: R x R + R 

Opp: R «• R 

Mult: R x R +  R 

Axioms:     1.     Sum(r, ,Sum(r2,r3)) = Sum(Sum(r,,r2),r3) 

2.     Sum(Zero,r)   = r 

3.    Sum(r,Zero)  = r 

4.     5um(r,   Opp(r))   =  Zero 

5. Sum(r1,r2)   = Sum(r2,r,) 

6. Mult(rlfMult(r2,r3))   • Mult(Mult(r1#r2),r3) 

7. Mult(r,,Sum(r2/r3))   = Sum(Mult(r,,r2),  Mult(r,,r3)) 

8. Mult(Sum(r1,r2),r3)  = Sum(Mult(r1#r,),  Mult(r2,r3)) 

If we put Inv:    R + R back into our operational specification, 

add the constant value Unit to R,  add the axioms: 

9.    Mulr(r1#r2)   = Mult(r2,r1) 

10.     Mult(r,Unit)   = r 

11.     Inv(Zero)   =   REJECT 

12.     Mult (r, Inv (r))   = K[Jnit(
1r)   AND  KRBOTBCTl

2r) 

PARTITION OF  r  IS 

1 2 
r|r ^ Zero    and    r|r • Zero 

AIII-4 

HIGHER OROER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 

•NU I    •• 
i—- -   - • •--,| 



to our axiom specification, and remove Axiom 8, because Axiom 9 

makes it superfluous, we get a formal specification of the fields 

as homogeneous algebras. 

The REJECT value in Axiom 11 is an object that we assume to be 

an "invisible" member of every category.  Any function that con- 

tains REJECT as an argument automatically has REJECT as its value, 

no matter how deeply embedded the REJECT argument may be.  In 

Axiom 12 we also have the universal primitive operation K^-..-.,-, 
RijiJECT 

defined on every type T, that produces the output REJECT for any 

input and the universal primitive operation K.. .. that produces 

Unit as output for any input (c.f. M. Hamilton and S. Zeldin, 

"AXES Syntax Description", Higher Order Software, Inc., Cambridge, 

MA, Dec. 1976, Section 8.0).  The REJECT value is useful because 

it enables us to avoid complicating the operational specifications 

of particular algebras and the definition of algebra itself. 

Without the REJECT value, we would have to specify the operation 

Inv as: 

Inv:  R - {Zero} +  R, 

violating our prescription that the domains and ranges in the 

operational specifications of the members of w are always Car- 

tesian products of the members of I.  We could keep this pre- 

scription without the REJECT value only by allowing membcjrs of 

w to be mathematical partial functions (operations), significantly 

complicating our notion of algebra. 

An algebra which is not homogeneous is said to be heterogeneous. 

An algebra [Z,ujis heterogeneous if I contains more than one mem- 

ber.  The most familiar heterogeneous algebras are the vector 

spaces. A non-empty set V is said to be a vector space over a 

non-empty set S, if (1) V is a commutative group with respect 

to an addition operation VSum defined on it, (2) S is a field 

with respect to addition (Sum) and multiplication (Mult) opera- 

tions defined on it, (3) there is an operation SMult, meaning 
-  ; 

Guttag (GUT75) calls this the "error" value, but "error" has I 
overly restrictive connotations.  "REJECT" connotes only tne 
fact that a "normal" output is not produced, not that a genuine 
error has occurred. 
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scalar multiplication, defined on both V and S which is associa- 

tive and distributive over both VSum and Sum, and which has the 

unit element of Mult as its own unit element. 

Formally, we get the following specification of the vector spaces 

as heterogeneous algebras: 

Vector Space v  = [l,to] 

I:    V, VZero e V 

S, S ?* V, Zero e s, Unit e S 

w: VSum V x V 

VOpp V +  V 

Sum S x S 

Opp S -• S 

Mult S X S 

Inv S +  S 

SMult S x V 

V 

Axioms:     1.     VSum   (v.,   VSumfv^v-) )   • VSum   (VSum(v1,v2) ,v^) 

2.     VSum   (VZero,v)   = v 

3.     VSum   (v,VZero)   - v 

4.     VSum   (v,VOpp(v))   = VZero 

5. VSum   (VT»V2)   =  VSum   (v2,v,) 

6. Sum   (s,,Sum(s2,s3))   =  Sum   (Sum(s1#s2),s3) 

7.     Sum   (Zero,s)   *  s 

8.     Sum   (s,Zero)   = s 

9.     Sum  (s,Opp(s))   =  Zero 
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10. Sum (s^Sj) - Sum (s2,s1) 

11. Mult(s1,Sum(s2,s3)) = Sum(Mult(s1,s2)f MulUs^s^) 

12. Mult(s1,s2) = Mult(s2,s1) 

13. Mult(s1,Mult(s2,s3)) =^ Mult(Mult(s1,s2) ,s3) 

14. Mult(Unit,s) = s 

15. inv(Zero) = REJECT 

16. Mult(s,Inv(s)) = Kmit(
ls)   AND I^^l2!) 

PARTITION OF s IS 

s | s ?  Zero 

2 i 
s s = Zero 

17. SMult(Unit,v) = v 

18. SMult(s,VSum(v1/v2)) = VSum(SMult(s,v1), SMult(s,v2)) 

19. SMult(Sum(s1/s2),v) • VSum(SMult(s1,v), SMult(s2,v)) 

20. SMult(Mult(s,,s2),v) = SMult(s1, SMult(s2,v)) 

Axioms 1-5 say that V and its operations comprise an additive 

Abelian group . Axioms 6-10 say that S, Sum, Zero, and Opp also 

constitute an additive Abelian group.  These axioms plus Axioms 

11-14 say that S and its operations comprise a commutative ring 

and, together with Axioms 15 and 16, that they comprise a field. 

Axioms 17-20 characterize the operation that relates S and V 

and, together with the immediately preceding axiomatizations of 

S and V, say that S,V, and all of the primitive operations speci- 

fied in the operational specification comprise a vector space. 

Or module, but see Note 4. 
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As specified, the algebra v  =[l,ü>]is a heterogeneous algebra, 

because I  contains two distinct categories.  If we remove the 

stipulation that S ^ V, then V can be a vector space over itself 

and the possibility that v  could be homogeneous is opened up. 

One variety of algebra that has proven to be particularly useful 

in system specification and that is incorporated into AXES are 

the type algebras of Guttag (GUT75).  If we examine closely the 

algebras we have seen so far, we realize that what they actually 

provide are schemata for structured sets.  The symbols "G", "R", 

"V", and "S" in the algebras G,R,  and v  are set variables, not 

names of specific sets.  Any set can be substituted for these 

variables, provided that there are operations definable on that 

set that satisfy the operational and axiomatic specifications. 

It follows that what these algebras define are mathematical 

structures, imposable on a large class of otherwise different sets. 

In the case of a type algebra we shift our perspective and view 

the algebra as characterizing a particular set.  One of the cate- 

gories in I is singled out as the type-of-interest and the speci- 

fication of the algebra is interpreted as an implicit definition 

of the kind of object that makes up the members of the type-of- 

interest.  The categories other than the type-of-interest are 

also referred to as types in a type algebra. 

Guttag (GUT75), for example, gives an algebraic specification of 

the type Natural  Numbejr that can be formulated in our framework 

as follows: 

Type Natural   Number  • [E,ID] 

Z:  Natural Number, Zero e Natural Number 

Boolean, True c Boolean, False e Boolean 

w:  Succ: Natural Number * Natural Number 

?Zero?: Natural Number * Boolean 

?£qual?: Natural Number x Natural Number «• Boolean 

?>?: Natural Number x Natural Number •• Boolean 
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Axioms:  1.  ?Zero? (Zero) = True 

2.  ?Zero? (Succ(n)) = False 

3.  ?Equal? (Zero, Zero) = True 

4.  ?Equal? (Succ(n),Zero) = False 

5c  ?Equal? (Zero, Succ(n)) = False 

6.  ?Equal? (Succ(n)), Succ(n,))= ?Equa."l? (n,n.) 

7.  ?>? (Zero,Zero) = False 

8.  ?>? (Succ(n),Zero) = True 

9.  ?>? (Zero, Succ(n)) = False 

10.  ?>? (Succ(n), Succ(n1)) = ?>? (n,nx) 

Guttag introduces Zero as an operation that maps -±he empty set 

onto Natural Number, Zero: 0  •*• Natural Number, saying that the 

emptiness of 0  guarantees that a unique constant walue results. 

Actually, however, since a mapping is mathematically a set of 

ordered pairs the first element of each member of which is a mem- 

ber of the domain, it follows that having an empty domain guaran- 

tees that there is no first element of any orderecd pair and thus 

no ordered pairs.  The mapping, viewed as a set oaf ordered pairs, 

turns out to be the empty set and thus not really a mapping at 

all.  If there is no input, there can be no outpurt, unique, con- 

stant, or otherwise.  Guttag's device is really umnecessary, in 

any event, because all we have to do is to state in our specifi- 

cation of I  that Zero is in Natural Number.  With* AXES, this is 

done by means of a WHERE statement, as we will se?e in Appendix IV. 
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The intent of the operations in this specification should be 

clear from their names, but their formal meaning is provided 

entirely by their operational and axiomatic specifications. 

Guttag's specification of the type Natural Number is, in reality, 

inadequate, because it omits the crucial axiom of induction? it 

still serves our purpose, however, as an example. We will see 

in Appendix IV how the inadequacy of his formulation can be 

remedied. 

In this example, we see that a type algebra can be viewed as 

defining what it means to be a member of the set with the sance 

name.  The algebra Natural  Number  defines the set of natural 

numbers. An object is_ a natural number if it belongs to the 

set characterized by the respective algebra.  The primitive op- 

erations in such an algebra are taken as being defined collec- 

tively in terms of their interactive behavior.  The function 

Succ, meaning successor, for example, has meaning only with re- 

spect to the specification of Natural Number  as a whole.  The 

specification defines all of its primitive operations at the 

same time, each in terms of the others, and, through them it 

defines its type-of-interest.  What makes Natural  Number  a type 

algebra, in contrast to the general algebras we saw earlier, is 

that the type-of-interest is taken to be a specific set of a 

particular kind of object that already exists in the world (ox 

in our minds) and which we are trying to make intelligible. 

The general algebras we saw earlier define mathematical struc- 

tures on arbitrary sets, as we have seen.  Guttag (GUT75) char- 

acterizes the type algebra as a restricted form of the general 

heterogeneous algebra and implies that the type Boolean must be 

presupposed.  Our explicit specification in Appendix IV of Boolean 

as a homogeneous type algebra, however, shows that both claims 

are incorrect. 

The usefulness of type algebras for system specification lies in 

the need to maximize the degree of abstraction in the specifi- 

cation of data types.  The customary operational means of speci- 

fying abstract data types requires us to imbue our data types 
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with more implementational meaning than is often desirable.  If 

we have to include elements of implementation in specifying an 

abstract data type, then we may unwittingly rule out more effi- 

cient implementations of that data type that are inconsistent 

with those elements. With HOS, however, we are able to divorce 

specification entirely from implementation and, with respect to 

abstract data types, we manage to do this by specifying those 

types algebraically, rather than operationally.  Appendix IV 

contains a list of algebraic specifications of abstract data 

types that are included in AXES as intrinsic types. 
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APPENDIX IV 

TSE INTRINSIC TYPES OF AXES 

Although AXES provides the means for algebraically specifying 

any desired abstract data type, there are a few types that are 

of sufficiently general usefulness in a wide variety of systems 

that we include them in AXES as intrinsic types.  These types 

must also be specified algebraically, of course, and we do so, 

once and for all, in this Appendix.  In all we provide six in- 

trinsic data types in AXES:  Booleans, properties, sets, natural 

numbers, integers, and rational numbers.  The Boolean data type 

automatically solves the "boot-strap" problem for abstract data 

types, because it can be characterized as a homogeneous algebra, 

i.e., entirely in terms of itself.  All our other intrinsic types 

presuppose the prior characterization of type Boolean  and so must 

be characterized as heterogeneous algebras.  Type Property  pre- 

supposes only type Boolean,  while type Set  and type Natural  all 

presuppose type Property.  Type Integer  presupposes type Natural, 

and tyre Rational   presupposes type Integer,     Our reasons for not 

providing the real numbers as an intrinsic data type will be dis- 

cussed in connection with our algebraic specification of the 

rationals.  All our intrinsic types will be specified in AXES 

syntax, rather than i*- the strictly mathematical format used in 

Appendix III.  In this Appendix, AXES statements are often num- 

bered for purposes of discussion (these numbers are not intended 

to be included as part of the AXES syntax). 

Type Boolean  is particularly easy to characterize, because it 

contains only two values, true and false (truth and falsity). 

Since I contains only one set and that set is finite, we could 

identify that set explicitly by simply listing its members. 

This frees us from the need to characterize the equality rela- 

tion on type Boolean,  which we could not do without a prior 

characterization of type Property.  Since there are only two 

distinct Booleans, which we explicitly list in the category 

specification, we can always tell which one we are dealing with 

simply by looking at it: 
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DATA TYPE:  BOOLEAN; 

PRIMITIVE OPERATIONS: 

boolean- = And(boolean,,boolean2); 1. 

boolean2 = Not(boolean,); 2. 

AXIOMS: 

WHERE True IS A CONSTANT BOOLEAN; 

WHERE False IS A CONSTANT BOOLEAN; 

And(True,True) = True; 1. 

And(True/False) = False; 2. 

And(False»True) = False; 3. 

And(False»False) = False; 4. 

Not(True) = False; 5. 

Not(False) = True; 6. 

END BOOLEAN; 

In this algebra we specify that E's single member ccontains exactly 

two elements, true and false, and that io contains* exactly two 

primitive operations, And and Not. And is charactserized as be- 

having exactly like the conjunction operator of prropositional 

logic and Not is characterized as behaving like t&m  negation 

operator.  These two elements and these two operations, as axio- 

matized, are all we need to characterize the type boolean    as 

an abstract data type. 

p   Once we have characterized an abstract data type itn terms of its 

categories and its primitive operations, defined ccollectively 

and implicitly through its axioms, we will often f:ind it useful 

to define other operations on that type.  Note thait the categories 

of the type algebra Boolean  other than Boolean itsielf were not 

listed explicitly in the AXES specification above,, but only im- 

plicitly through their appearance in the PRIMITIV!': OPERATION 

specification. 
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We are free to define any operation we want on an already-defined 

type as long as the operation definition is consistent with the 

axioms of the type. New operations can be characterized either 

as operations (c.f. HAM76, Section 8) or as derived operations 

(c.f. HAM76, Section 16).  An operation is specified in AXES ex- 

plicitly in a form that is directly translatable to a control 

map.  A derived operation is specified implicitly by means of 

assertions that describe the behavior of the operation with re- 

spect to other already-defined operations. Either kind of opera- 

tion could be written as a control map, if desired.  They differ 

in how they are specified,- not in what they are.  What distinguishes 

both of these kinds of operations from primitive operations on 

their data type is that their existence is provable mathematically 

from the existence of the primitive operations and the axioms 

of the type.  If an operation's existence is not so provable, 

then adding it to the type produces a new type, of which the new 

operation is a primitive. 

In the case of type Boolean,  for example, we will often find it 

useful, as in logic, to have available the notions of disjunction, 

entailment, and sameness of truth-value.  We can introduce these 

notions as operations on type Boolean  by means of the following 

definitions: 

OPERATION:  b3 = Or(b,/bj) ; 

WHERE bx,b2,b3 ARE BOOLEANS; 

WHEREBY b3 = Not(And(Not(b.),Not(b2))); 

END Or; 

OPERATION:  b3 = Entails(b,,b2); 

WHERE b1,b2,b3 ARE BOOLEANS; 

WHEREBY b3 « Or (Not (b^ ,b2) ; 

END Entails; 

OPERATION:  b3 = Samefb^b^ 

WHERE b1,b2,b3 ARE BOOLEANS; 

WHEREBY b3 = Or (And (b^b^ ,And (Not (b^ ,Not (b2))) ; 

END Same; 

AIV-3 

HIGHER ORDER SOFTWARE, INC • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900 



The first definition defines Or in terms of And and Not in a 

way that is familiar from propositional logic.  We could have 

introduced it as a primitive operation by including the axioms: 

Or (True,True) = True ; 

Or (True,False) • True; 

Or (False,True) = True; 

Or (False,False) = False; 

in our axiomatic specification of type Boolean,  but this would 

have complicated our algebra unnecessarily.  We simply do not 

need Or to characterize the Booleans as a data type.  Simil.^iy, 

we could have included Entails and Same as primitive operations, 

but there was no point in doing so as long as we can define them 

as operations.  The point is that And and Not are all we need to 

characterize the Booleans, even though there are other operations 

that we find useful, and that we therefore introduce for Other 

purposes. 

It should be noted that Same is an equivalence relation on type 

Boolean.     This relation coincides with equality, because we al- 

ready know when two Booleans are the same or distinct, as a 

result, as noted above, of the finiteness of the single set in 

I.  If this were not the case, in fact, that is, if equality were 

not automatically given to us, then it would be impossible to 

write axioms for type Boolean,   because the "•" sign would be 

meaningless.  For convenience and clarity, we will sometimes 

use " = ", and a few other symbols like "<", in the conventional 

way, rather than in strictly functional notation, once we have 

already defined them functionally.  For examplt, it may be sim- 

pler to write "ii^o" in an axiom for type Rational,   rather than 

"I<(ij^ij)."  This is permissable, because we will already have 

characterized I< (i.e., ,Jinteger-less than") in our specification 

of type Integer   (c.f. HAM76 (Section 11)). 
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The second intrinsic data type that AXES provides is that of pro- 

perties. We will need properties in characterizing the sets as 

a data type. Properties are basically things that map other things 

onto truth-values, i.e., Booleans. The property "prime", for 

example, maps the integer 2 onto true, 3 onto true, and 4 onto 

false, because 2 is prime and 3 is prime, but 4 is not prime. 

In characterizing properties algebraically, we will have to state 

what kinds of things the properties are properties of. We can 

do this by including a type parameter "T" in our category speci- 

fication and treating our algebraic specification as a function 

of r.  It follows that our algebra for type Property  is really 

an algebra schema depending of the type parameter T and that there 

is, therefore, a distinct type Property   (of T)   for every type T. 

We can express the fact that properties map other things (i.e., 

t's) onto Booleans by introducing a function that maps proper- 

ties and t's onto Booleans.  If we call this function "Has", so 

that "Has(P,t)" is true, when t has the property P, then we must 

specify that Has maps properties and t's onto Booleans in a way 

that preserves conjunctions and negations.  This can be stated 

very simply in terms of axioms.  To define equality or identity 

of properties, we will also have to introduce two quantifier 

operations Forall and Exists (CUS76a).  Properties can be mapped 

onto Booleans by combining them with t's via the Has function, 

but they can also be mapped onto Booleans directly via these 

quantifier functions.  Has maps P and t onto true, if t has the 

property P.  Forall maps P itself onto true, if every t has the 

property P. Exists, similarly, maps P onto true, if there is some 

t that has P, regardless of which particular t that is.  Once we 

have Forall available to us, it will be a simple matter to specify 

when two properties are equal (identical). 

As well as characterizing the relationship, which we have just 

discussed, between type Property   (of T)  and type Boolean,  we 

must also characterize the internal structure of type Property 

(of T).  Properties constitute a Boolean lattice (FUN74), so we 
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must include the axioms for a Boolean lattice in their algebraic 

specification as a data type. The Booleans also constitute a 

Boolean lattice, but since there are only two Booleans, enabling 

us to list the values of their primitive operations explicitly, 

we can prove the axioms for a Boolean lattice from that explicit 

list of values. For properties, however, we must include the 

axioms for a Boolean lattice as axioms of our algebra, because 

there is nothing else that we can prove them from. 

The foregoing discussion is summarized (and elaborated) in the 

following AXES specification: 

DATA TYPE:  PROPERTY(OF T) ; 

PRIMITIVE OPERATIONS: 

property« = Pand (property, ,property2) ; .1. 

property- = Por(property,,property2); 2. 

property2 = Pnot(property,); 3. 

property- • Pentails(property,,property^; 4. 

boolean = Has(property,t); 5. 

boolean = Forall(property); 6. 

boolean • Exists(property); 7. 

boolean • Ident(property,,property2); 8. 

AXIOMS: 

WHERE T IS SOME TYPE; 

WHERE P1#P2'
P3 ARE PROpERTIES; 

WHERE t is a T; 

WHERE Nee IS A CONSTANT PROPERTY; 

WHERE Contra IS A CONSTANT PROPERTY; 

Pand(Px/P2) - Pand(P2,Px); 1. 

Por(P1,P2) = PorfP^P^; 2. 

Pand(Pj^,Pand(P2,P3)) = Pand(Pand (P^P^ ,P3) ; 3. 

Por(P1,Por(P2,P3)) « Por(Por(P1,P2),P3); 4. 
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Pand(P1,Por(P1,P2)) = p^ 5. 

Por(P1,Pand(P1,P2)) = P^j 6. 

Pand(P1,Por(P2,P3)) = Por(PandfP^P^ , Pand(P1,P3)) ; 7. 

Por(P1,Pand(P2,P3)) = Pand(Por (P^P^ , Por(PlfP3)); 8. 

Pand(P,Pnot(P)) = Contra; 9. 

Por(P,Pnot(P)) = Nee; 10. 

Has(Nee,t) • True; 11. 

Has(Contra,t) = False; 12. 

Has(Pand(P1,P2),t) - And (Hat (P«,t), Has(P2,t)); 13. 

Has(Por(P1,P2) ,t) = Or(Has(P1#t), Has(P2,t)); 14. 

Has(Pnot(P),t) = Not(Has(P,t)); 15. 

Forall(Nec) = True; 16. 

Exists(Contra) = False; 17. 

Forall(P) • Not(Exists(Pnot(P))); 18. 

Exists(P) = Not(Forall(Pnot(P))); 19. 

Entails(Forall(P), Same(Has(P,t),True)) • True; 20. 

Entails(Same(Has(P,t),True), Exists(P)) = True; .         21. 

Ident(P1,P2) • And(Forall(Pentails(P1#P2)), 

Foi 

END PROPERTY(OF T) 

Forall(Pentails(P2,P1) )); 22. 

OPERATION:  P3 = PentailstP^P^ ; 

WHERE P1#P2,P3 ARE PROPERTIES; 

WHEREBY P3 = PorfPnotfP^ ,P2) ; 

END Pentails; 

Axioms 1-iQ in this specification characterize type Property 

(of T)  as a Boolean lattice, and together with Axiom 22, give us» 

the internal structure of the type. Axiom 22 is essential to 

the internal structure, because it tells us when two properties 
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are the same and when they are distinct. The value Nee is the 

necessary property, which every t has, and serves as the unit 

element of the lattice, while the value Contra is the contradic- 

tory property, which no t has, and serves as the zero element 

of the lattice. Axioms 18 and 19 tell us that Forall and Exists 

are related by dual negation, which is definable for any quanti- 

fier (CUS76a, CUS76b). Axioms 11-21 characterize the interface 

of type Property(of T)  with type Boolean,  but they also provide 

the prerequisite for the meaningfulness of Axiom 22. We thus see 

the sort of mutual dependence among the various aspects of speci- 

fication, in this case between the internal structure and the 

external interface, that is characteristic of algebraic specifi- 

cation. One might think that Ident could be defined as an opera- 

tion, since Axiom 22 defines it explicitly in terms of already 

defined operations. This would be wrong however, because a notion 

of identi-y (equality) is essential to characterizing the internal 

structure of the type.  Without Axiom 22, Axioms 1-10 would liter- 

ally be meaningless, because we would have no clearly specified 

interpretation of the "-" signs that occur in them. 

We have stated (in Axiom 22) that two properties are identical 

if they are mutually entailing for every member of the type whose 

members they are properties of, that is, if they hold of exactly 

the same members of that type.  Ultimately, such a definition is 

inadequate, because it treats certain properties as identical 

which, for some purposes, should not be considered identical. 

The two conjunctive properties, "both less than and greater than 

2" and "both less than and greater than 100", for example, are 

distinct properties, in the general sense, because they "say 

different things" about the objects they are supposed to hold of. 

By our definition, however, these two properties are identical 

and, in fact, are both identical to Contra, because they hold of 

exactly the same objects, namely none. Since we are interested 

in properties primarily as a way of specifying set partitions 

in system specifications, our definition of identity nevertheless 

suffices for our purposes. 
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Given the way we have characterised properties as sin abstract data 

type, it is a simple matter to do the same for sets;. Because of 

the way we have defined identity for properties, thte type Pro- 

perty   (of T), as we have specified it, will be isoraeorphic to the 

type Set   (of T). For every property there is a set., called the 

extension of that property, which consists of exact.ly the objects 

that have that property.  Given our definition of piroperty identity, 

this mapping from properties to sets is one-to-one.  It follows 

that we can characterize type set   (of T)   isomorphicailly to type 

Property   (of  T)  in terms of this extension mapping, if we guarantee 

that the mapping and its inverse preserve the primittive operations 

of the two types.  This is. done in the following specification: 

DATA TYPE:  SET(OF T); 

PRIMITIVE OPERATIONS: 

set3 = Inters(set,,set2); 1. 

set3 = Union (set., setO; 2. 

set2 • Comp(set,); 3. 

set = Extension(property); 4. 

property • Prop(set); 5. 

boolean • Element(t,set); 6. 

boolean = Subset(set.,set2); 7. 

boolean • Equal(set.,set2); 8. 

AXIOMS: 

WHERE s,,s2,s3 APE SETS; 

WHERE P IS A PROPERTY; 

WHERE Null IS A CONSTANT SET; 

V7HERE T IS SOME TYPE; 

Inters(s,,s2) • Inters(s2,s.); 1. 

Union(s.,s2) = Unionises,); 2. 

Inters(s,,Inters(s2,s3))= Inters(Inters(s.»s«),8^);        3. 

Union (s.. Union (s2, S.J ) • Union(Union(s,,s2),s3); 4. 
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Inters(s,,Union(s,,s2)) * s,; 

Union(s,,Inters(s,,s2)) = 8,; 

Inters(s,,Union(s2,s3)) * Union(Inters(s,,s2)> 

Inters(s1,s3)); 

Union (s,. Inters (s2,sO) - Inters(Union(s,,s2), 

Union(s.,s^)); 

Inters(s,Comp(s)) = Null; 

Union(s,Comp(s)) • T; 

Extension(Prop(s)) = s; 

Prop(Extension(P)) = P; 

Prop(T) = Nee; 

Prop(Null) = Contra; 

Prop(Inters(s,,s2)) - Pand(Prop(s,),Prop(s2)); 

Prop(Union(s,,s2)) = Por(Prop(s,), Prop(s2)); 

Prop(Comp(s)) = Pnot(Prop(s)); 

Element(t,s) • Has(Prop(s),t); 

Subset(s,,s2) 
3 Forall(Pentails(Prop(s,),Prop(s2))); 

Equal(s,,s2) * And(Subset(s,,s2), Subset(s2»s,)) ; 

END SET(OF T); 

5 

6 

8 

9 

10 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Axioms 1-10 in this specification characterize type Set of   (T) 

as a Boolean lattice, with the null set Null as the zero element 

and the universal set T as the unit element.  Axioms 11-17 define 

the isomorphism mapping between type Set   (of  T)  and type Property 

(of  T).  The function Extension maps a property onto the set of 

elements that have that property, and the function Prop, meaning 

"property", maps a set onto the property of being in that set. 

This automatically accounts for all properties because of our 

definition of property identity, as noted above.  Axioms 18 and 

19 define the usual notions of element and subset, and Axiom 20 

defines equality as mutual subset.  Something is in a set if it 
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has the property that corresponds to the set and one set is a sub- 

set of a second if everything that has the property of the first 

has the property of the second.  Two sets are equal if each is 

a subset of the other.  It is worth noting that T itself is a 

grandmember of I in this case, because it functions as the unit 

element of the algebra.  Upon reflection, we realize that the 

set Set (of T), i.e., the member of I,   as opposed to the algebra, 

turns out to be just the power set of T itself. 

Now that we have sets and properties available to us, we can con- 

struct an adequate specification of the natural numbers as an 

abstract data type.  As we noted in Appendix III, Guttag's speci- 

fication of the type Natural  Number  is inadequate, because it 

leaves out the crucial axiom of induction.  This axiom can be 

formulated as follows (FUN74, p. 72): 

If a property P of the natural numbers satisfies the follow- 

ing two conditions, then P holds for every natural number; 

(1) P holds for 0 

(2) For every natural number n, if P holds for n, then 
P holds for n'; 

where n' is the successor of n.  This axioms tells us that we can 

be sure every natural number has a given property, if we know that 

0 has that property and that n+l's having it follows from n's 

having it, for every n.  If we begin at 0, in other words., and go 

successively from each natural number to the next, then we eventu- 

ally get to every natural number.  This is a crucial characteris- 

tic of the natural numbers and cannot be omitted if our intent is 

to characterize their data type as fully as possible. 

Since we now have the facility for dealing with properties, we 

could formalize the axiom of induction as an axiom of type Natural 

Number   in terms of the members of type Property   (of Natural   Number), 

by taking 7 = Natural   Nunber,   in other words, in our type Property 

(of  T).  It turns out, however, that the actual formulation of this 

axiom in our framework is  very complicated and somewhat unintui- 

tive, so we are led to look for an alternative axiom that would 
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have the same effect as the axiom of induction. Fortunately, 

this purpose can be served by a characteristic of the natural 

numbers called the "well-ordering principle", which states that 

every non-empty set of natural numbers contains a least element. 

The axiom of induction and the well-ordering principle are logical- 

ly equivalent, in the sense that each can be derived from the 

other within the context of the other axioms for the natural num- 

bers (LAN67), so we are free to take either one as one of our 

axioms. The well-ordering principle can be formulated very simply 

in our framework, in contrast to the complexity and unintuitive 

character of the axiom of induction, so we will adopt it to com- 

plete our specification of type Natural  Number. 

This gives us the following AXES specification: 

DATA TYPE:  NATURAL; 

PRIMITIVE OPERATIONS: 

natural. • Succ(natural,); 

boolean * ?2ero?(natural); 

boolean • ?Equal?(natural,,natural«); 

boolean • ?>?(natural,,natural2); 

natural • Smin(set(of naturais),); 

1. 

2. 

3. 

4. 

5. 

AXIOMS: 

WHERE  n,nx ARE NATURALS; 

WHERE  s   IS  A SET(OF NATURALS); 

WHERE   Zero  IS  A CONSTANT  NATURAL; 

?Zero?(Zero)   * True; 

?Zero?(Succ(n))   *  False; 

?Equal?(Zero,Zero)   • True; 

?Equal?(Succ(n),Zero)   * False; 

?Equal?(Zero,Succ(n))   • False; 

?Equal?(Succ(n),Succ(n^))   •  ?Equal?(n,n1); 

?>?(Zero,Zero)  * False; 
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. 

?>?(Succ(n),Zero) = True; 

?>?(Zero,Succ(n)) = False; 

?>?(Succ(n),Succ(n,)) = ?>(n,ru); 

Element(Smin(s),s) = True; 

Entails(Element(n,s), ?>?(n,Smin(s))) * True; 

END NATURAL; 

8. 

9. 

10. 

11. 

12. 

This specification is identical to Guttag's specification of type 

Natural  Number,  which we saw in Appendix III, except for the new 

operation Smin and the two new Axioms 11 and 12. Axioms 11 and 

12, along with the presence of Smin in üJ, provide us with the 

effect of the well-ordering principle. The fact that the Smin 

is in a) tells us that every set s of natural numbers is associated 

with a natural number Smin(s). Axiom 11 tells us that the natural 

Smin(s) is an element of s and Axiom 12 tells us that Smin(s) 

is, in fact, the minimum element of s. This specification, then, 

completely specifies type Natural  Number  as the type of what we 

usually think of as the natural numbers. 

Now that we have a full specification of the natural numbers, 

we can define operations on their data type.  Since we have 

already characterized equality of natural numbers as a prim- 

itive operation of our data type, we are free to interpret the 

" = " sign in our definitions as referring to that equality.  We 

will also use other operations, such as "And** in the customary 

way, rather than the more complicated functional notations, as 

long as these operations have been fully characterized (cf. 

section 10).  Some of the following operations, such as Sum and 

Prod, meaning sum and product, respectively, are included be- 

cause of their general usefulness; others are included because 

they will be useful in specifying later data types: 

DERIVED OPERATION:  H, = Sumfn^n^; 

V7HERE n,,n2,n3 ARE NATURALS; 

Sum(Zero,n~) * nj; 

Sum(n.,Zero) • n,; 
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t 

Sum(n.,Succ(n2)) • Succ(Sum(nwii2)); 

Sum(Succ(n1) ,n2) = Succ(Sum(n,,n2)); 

END Sum; 

3. 

4. 

DERIVED OPERATION:  n3 = Prod(n^i^) ; 

WHERE riwllj,!^ ARE NATURALS; 

Prod(Zero,n2) = Zero; 

Prod(n,,Zero) • Zero; 

Prod(nwSucc(n2)) • Sum (Prod (n,, n2) ,n^); 

Prod(Succ(n,),n2) • Sum(Prod(n.,n2),n2); 

END Prod; 

1. 

2. 

3. 

4. 

DERIVED OPERATION:  n3 = Ndiff(n1#n2); 

WHERE n^n^i^ ARE NATURALS; 

SUm(n,,Ndiff( n^,^)) • n2; 

Ndiff(2(n.,n2)) * REJECT; 

PARTITION OF (IK,!^) IS 

(n^rij) |n^ii2» 

(nlfn2)|n2>n1; 

END Ndiff; 

DERIVED OPERATION:  n, • Maxm, ,n~); 1"*2 
WHERE ru,!***!*, ARE NATURALS; 

Max (n^n-) 

2 
Max  (nx,n2) 

n 1' 

n2; 

PARTITION OF   (n1#n2)   IS 

(n^xij) |n2<n1, 

2 (n1#n2)|n1<n2; 

1. 

2. 

1. 

2. 

END Max; 
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DERIVED OPERATION:  n3 = Minfn^n^; 

WHERE n^n^i^ ARE NATURALS; 

M.in( (nirn2)) • n2; 

2 2 
Min( (nlfn2)) = n^i 

PARTITION OF (lUjlU) IS 

(n1#n2)|n1<n2; 

END Min; 

DERIVED OPERATION:     n3  = Quotdi^i^) ; 

WHERE n1#n2,n3 ARE NATURALS; 

Quot     (n^n^   =  REJECT; 

2 2 
Sum(Prod(Quot  (n^n^ , Rem  (n.,n2)))= n,; 

PARTITION OF (llwiu) IS 

(n^iij) |n2 • 0, 

(n1#n2)|n2 +  0; 

END Quot; 

1. 

2. 

1. 

2. 

DERIVED OPERATION:  n3 - GCD(XU,n2) I 

WHERE llwlUflU ARE NATURALS; 

Factor(GCD(n«,n2) ,n.) * True; 1. 

Factor(GCD(n,,n2),n2) = True; 2. 

Entails(And(And(Factor(n,,n2) ,Factor (n,,n3)) ,Not(?Egual? ( ny Zero))) 

Factor(n,,GCD(n2,n3))) » Trua; 3. 

END (KO- 

OPERATION:     n3  *  Rem(n1#n2); 

WHERE  nx,n2,n3  ARE NATURALS; 

EITHER n3  « K
REjECT(lnl'ln2)   0THERWISE 

EITHER n3   •  IDENTIFY^(2nir
2n2)   OTHERWISE 
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WHEREBY n3 * Rem(Ndiff 
3(nx,n2),

3n2; 

PARTITION OF (n^rij) IS 

(n^iig) |n2 = 0, 

(n.#n2)|n2 +  0 AND n^  < n2, 

(n*,n2) |n2 t  0 AND n2 < n,; 

END Rem; 

OPERATION:  b = Factor(n^n^ ; 

WHERE üwlU ARE NATURALS; 

WHERE b IS A BOOLEAN; 

WHEREBY b » ?Equal?(Rem(n2,n,),Zero); 

END Factor; 

Derived operations Sum and Prod give us addition and multiplica- 

tion, respectively. Derived operation Ndiff gives us the sub- 

traction of smaller naturals from larger ones.  Derived opera- 

tion Max gives us the larger of two naturals, derived opera- 

tion Rem gives us division (quotient) with remainder, and opera- 

tion Factor tells us when one natural is a factor of another. 

Derived operation GCD gives us the greatest common divisor of two 

naturals and will be needed in the specification of the rationals. 

The Integers can be characterized as a data type in terms of the 

natural numbers by recognizing that an integer is just a natural 

number with a sign.  Since we need two distinct signs, we can 

take our signs to be the Booleans, with True interpreted as plus 

and False interpreted as minus.  This gives us the following 

specification: 

DATA TYPE:  INTEGER; 

PRIMITIVE OPERATIONS: 

boolean • ?Iequal?(integer.,integer«); 1. 

boolean « ?I>?(integer,,integer2); 2. 

natural = Abs(integer); 3. 
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: 

boolean • Sign(integer); 

integer- • Isum(integer.,integer2); 

integer- • I prod (integer., integer.,) ; 

integer3 • Iquot(integer.»integer,); 

4. 

5. 

6. 

7. 

AXIOMS s 

WHERE iwi2 
ARE NATURALS; 

WHERE Izero IS A CONSTANT INTEGER; 

WHERE lone IS A CONSTANT INTEGER; 

?Iequal?(i.,i-) • Or(And(?Equal?(Abs(i.)»Zero)» 

?Equal?(Abs(i2)/Zero)), 

And(?Equal(Abs(i1) ,Abs(i'2)) > 

Same (Sign (ij^),Sign(i2)))); 1. 

?I>?(i1,i2) (Same(Sign(i.)»True) & Same(Sign(i2)»True) 

&?>?(Abs(ix),Abs(i2))) 

!(Same(Sign(i,),False) & Same(Sign(i2)»False) 

&?>?(Abs(i2) »AbsCi^)) 

!(Same(Sign(i.)»True) & Same(Sign(i2)»False)); 

Ab8(lsum(i1,i2)) 
s Sum (Abs f1^),Abs(1i2)) AND 

(Ndiff(Max(Abs(2i1), Abs(
2i2)), 

Min(Abs(2i1),Abs(
2i2))); 

PARTITION OF   Uifi*)   IS 

(i,,i2) |Sign(iJ   • Sign(i2) , 

2,_. (i1,i2) |Sign(i1)   ^SignU^; 
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Sign(Isum(i1#i2))   • Sign(1i1)  AND Signf2!.)  AND Sign(3i2);       4. 

PARTITION OF   ttiri?)   IS 

(i-^ij)|Sign(i1)   = Sign(i2), 

2(iiri2)|Sign(i1)   ^ Sign(i2)  AND Abs(i2)   <Abs(i«), 

3(i1,i2) Isignd^)   ^ Sign(i2)  AND Abs(i^   <Abs(i2); 

Abs(Iprod(i1#i2))   » Prod (Abs (i^ , Abs (i2)); 5. 

Sign(Iprod(ilfi2))   = Same (Sign (i^^) ,Sign(i2)) ; 6. 

Abs(Izero)  « Zero; 7. 

Sign(Izero)   * True; 8. 

Abs(lone)   * Succ(Zero); 9. 

Sign(lone)   • True; 10. 

AbsdguotU^ij))   • Quottikbtd«) ,Ab«(i2)); 11. 

Sign(Iquot(i1#i2))  « Same (Sign (i^ , Sign (i2)); 12. 

END  INTEGER; 

DERIVED OPERATION:     integer2  »  Iopp(integer,); 

WHERE i  IS AN INTEGER; 

Sum(i,lopp(i))   • Izero; 

END Iopp; 

OPERATION:     i3 •  Idiff(ix,i2); 

WHERE  i,,i2,i3 ARE  INTEGERS; 

WHEREBY  i^  *  Sum(i,,Iopp(i2)); 

END  Idiff; 

DERIVED OPERATION:     integer3  « IGCD(integer, ,integer2); 

WHERE i1#i2 ARE INTEGERS; 

AbsUGCDU^ij))   " 6CD(Abs(i   )#Abs(i2)); 1. 
Sign(IGCDtij^,i2)) « True; 2. 

END IGCD ; 
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Axiom 1 is complicated by the fact that zero cam have either a 

plur (true) or minus (false) sign. We want Sign to be a mapping, 

however, (i.*., a function in the mathematical, snot AXES, seise, 

c.f. HAM/6 (Section 8.0)) so we assume from the s-tart that plus 

zero and minus zero are the same entity. In Axion 8 we say zero 

has r  plds sign, but Axiom 1 tells us that if a iminus zero occurs, 

it is *eally the sa,T2 integer as plus zero. Two integers are equal 

if the; have the same absolute value and the same sign, unless 

their al--«olute values are both zaro.  In that case, they are equal 

regardless of their rigns. 

The rational numbers can be characterized, as in modern arith- 

metic theory, as ordered pai*j3 of integers that Inave no common 

factors. Adopting this approach we get the following specifi- 

cativ »; 

DAT* TYPE:  *AtfXGK£r.#! 

PRIMITIVE OPERATION: 

boolean • ?Requal?(rational,,rational-); 

boolean * VR>?(rational.,rationale); 
X im 

integer = Nuia(rational); 

integer * Denen(rational); 

rational » Eteuft, (rational.,rational2); 

rational * Rprcd(ration?1.,rational2); 

boolean • Pos(rational); 

AXIOMS: 

WHERE r#r1#r2 --RE RATIONALS ; 

WHERE Rzero IS k  CONSTANT RATIONAT, 

WHERE Rone IS A CONSTANT RATIONAL; 

?Iequal?(Denom(r) ,I*:ero) • False; 

IGCD(Abs(Num(r),Abs(Denom(r)))) • lone; 

Rprod(r,Denom(r)) • Kum(r); 

?Requal?(r1,r2) = ?Iequal?(Iprod(Num(r1) ,Denom(r2))) , 

Iprod(Denom(r,) ,Non»(r2))) ; 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

1. 

2. 

3. 

4. 
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£. 

Hum(R.um<rlfr2»   - Iquot(Cross(r^) ,  IGCD(Abs (Cross (r^)), 
AbsfDproälr^rj)))); 

DMlMCr^r^ « lquot(DProd(rrr2), IGCD(Abs(Cross(r1#r2)), 

AbsfDprocKr^rj)))) ; 

Num(Rprod(rrr2)) - IquotM*cod(rrr2), IGCD(Äb»(Hprod(r1#r2)), 
Abs(Dprod(r1,r2)))); 

1' 

Denom(RProd(r1,r2)) - Iquot(Dprod(ryr2), IGCO(Ab«(Hprod(r1,r2)), 
Abs(Dprod(r1,r2)})); 

Num(Rzero) * Izero; 
Denom(Rzero) • lone; 

Pos(r) * And(Not(Equal(r,Rzero)) ,Same(Sign(Num(r)) , 
Sign(Denom(r)))); 

?R>?(r.fr2) • Pos(Rdiff(r1#r2)); 

END RATIONAL; 

8. 

S. 

ILO. 

12. 

112. 

OPERATION:     r3 • Cross(r1#r2); 

WHERE  r1,r2,r3  ARE  INTEGERS; 

WHEREBY r3 •  IsumdprodfNuratr,} ,Denom(r2)) , 

Iprod(Denom(r,),Num(r2))); 

END Cross; 

OPERATION:     r3  • NprodU^rj) ; 

WHERE  r,,r2,r3  ARE  INTEGERS; 

WHEREBY r3 «  Iprod(Num(r1),Num(r2)); 

END Nprod; 

OPERATION:     r3  -  Dprod(r,,r2); 

WHERE rl#r2,r, ARE INTEGERS; 

WHEFEBY r3 • IprodtDenomfrj),Denom(r2)); 

EffD Dprod; 
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The functions Num and Denom give the numerator and denominator 

of a "fraction" in the "lowest terms".  The operations Iguot 

and GCD are vsed throughout the axioms to guarantee that sums 

and products of rationals are always expressed in such "lowest 

terms".  The operations Cross, Nprcd, and Dpr>€  are just useful 

abbreviations that .; ^atly simplify the definitions of addition 

and multiplication. 

DERIVED OPERATION:  rationa^ » Repp (rational^ ; 

WHERE r IS A RATIONAL; 

Rsum(r,Ropp(r)) = Rzero; 

END Ropp; 

OPERATION:  r3 = Rdiff (r^rj) ; 

WHERE r1#r2,r3 ARE RATIONALS; 

WHEREBY r^ = RsuroCr^/Roppd«)) ; 

END Rdiff; 

DERIVED OPEKATION:  rational- • Rinv(rational,); 

WHERE r,r3,r. ARE RATIONALS; 

Rinv(Rzero) • REJECT; 

EITHER NomfRprodt^) ,Rinv(r2))     -  KREJECT(lr) 

OTHERWISE NumtRprodd^) ,Rinv(r2))   « Kione(2r)'* 

EITHER Denom(Rprod(r,Rinv(r2. ))   = KR£JECT(lr) 

OTHERWISE Denom(Rprod(r,Rinv(r2)))   » K
Ione<2r>'* 

PARTITION OF r  IS 

Xr|r -  0, 

2r|r ft 0; 

END  Rinv; 

OPERATION:     r3  «   Rdivfr^r^; 

WHERE  ri'r2'r3  ARE  NATIONALS; 
WHEREBY  r3  *  Rprod(r?,Rinv(r2)); 

END  Rdiv; 
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These are the usual opposite, difference, inverse, and division 

for the rational numbers. 

The problem of specifying the real numbers presents; a serious 

problem for the algebraic specification techniques introduced 

by Guttag and expanded here. We have already seen how Guttag's 

approach must be expanded to give an adequate specification of 

the natural numbers. A complete account of the natural numbers 

requires an axiom equivalent to the axiom of induction and well- 

ordering principle and such an axiom cannot be formulated without 

a specification of properties or sets as abstract dlata types, or 

some equivalent modification of Guttag's approach.  In the case 

of the reals we encounter a similar situation.  The principal 

reason for introducing the real numbers in raathematiics is to 

fill in the "holes," so to speak, in the set of ratiionals visual- 

ized as a "line." Speaking somewhat more formally, there exist 

sequences of rationals that seem for all the world ass if they 

"ought" to converge, but for which there is no rational to which 

they do converge.  The reals are introduced tc ?rovicde limits 

for these otherwise non-convergent sequences.  Speakcing still 

more formally, we introduce the following definitioms, where K 

is the set of rationals (actually, any ordered field?) (LAN67, 

pp. 123-4j: 

A sequence {x } in K is said to be a Cauchy secpjence if 

given an element ^>0 in K, there exists a positdive inte- 

ger N such that for all integers m, i > N we hav/e 

I x - x I < e 1 n   m1 — 

hn  ordered field lb which every Cauchy sequence converges 

is said  to be complete. 

The principal formal difference between the rationales and the 

reals is that, while the rationals constitute an ordered field, 

the reale constitute a complete ordered field.  The obstacle we 
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face in trying to axiomatize the reals in our modified Guttag 

framework is that there seems at this time to be no clearly 

satisfactory way to formulate this notion of completeness within 

that framework. 

fe- 

in retrospect, although we may eventually find a way to formu- 

late completeness within our framework, it may be that our pre- 

sent inability to do so is really a virtue, rather than a defect 

of our framework.  The real numbers have always been really a 

convenient myth with respect to computer-based systems. Although 

we often talk in terms of real numbers, the finite character of 

our machines (and of ourselves) always forces us, in the end, 

to "round-off" our real numbers and approximate them by rationals. 

The problems that arise as a result of this situation are widely 

known (e.g. see (ZEL73)).  This suggests that our present 

inability to formulate completeness (and thus the reals) in 

the framework of type algebra may, in fact, be a strength of 

that framework, rather than a weakness, reflecting its correct- 

ness as a model of what computer-based systems are really capable 

of. 
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APPENDIX V 

SAMPLE AXES SYSTEM SPECIFICATION 

Specification of Data Type: WORD 

In what follows, the axiomatization of type WORD is given, some 

abstract operations are specified, and a description of the primi- 

tive and abstract operations on the type are given in Table AV-1. 

DEFINE WORD; 

PRIMITIVE OPERATIONS: 

word2   = Setspaces(word.,natural,); 

word. 

word. 

word. 

Addelmt(word.,natural.); 

Lastelmt(word.); 

Removeelmt(word.); 

natural. • Nspaces(word.) ; 

natural, « 

boolean, • 

Nelmts(word.); 

Samew(word.,word2); 

AXIOMS: 

WHERE 1 IS A CONSTANT NATURAL; 

WHERE n,n.,n-, ARE NATo'PALS; 

WHERE w,w.,w2 ARE WORDS; 

WHERE Nullword IS A CONSTANT WORD; 

Nspaces (Nullword) = Zero; 

Nelmts (Nullword) • Zero; 

Nspaces(Setspaces(w,n)) * n; 

Nelmts(Addelmt(w,n)) » Sum(Nelmts(w),1); 

Samew(w,w) * True; 

Samew(Setspaces(w,n.),  Setspaces(w,n-))   * Equal(n.,n2); 

Samew(Addelmt(w,n.), Addelmt (w,nO )  = EquaKn, ,n2) ; 
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TABLE AV-1 
Description of Operations on Type WORD 

OPERATION DESCRIPTION 

Nu11word: 

Setspaces: 

Addelmt: 

Lastelmt: 

Removeelmt 

Xspaces: 

Nclmts: 

Sanew: 

Lengthw 

Element: 

Addspaccs: 

Kdiffz: 

Constant value, not an operation. 
The value of Wordi will be a word with a null string of 
elements and a space of length zero. 

Wordi x Nati -*• Word2. 
The element string of Word2 will be identical to Wordi. 
Nati will be the size of the space of Word2. 

Wordi x Nati •»• Word2. 
Add Element. Word2 will be the same as Wordi except the 
element associated with Nati will be concatinated on the 
end of its element string. 

Wordi "*" Word2. 
Last Element. The element string of Word2 is the last 
element in the string of Wordi. If the element string 
of Wordi is null, the element string of Word2 will be 
null also. Word2 will have a space of size zero. 

Wordi + Word2. 
Remove Element. Word2 will be the same as Wordi except 
the last element in the element string will be omitted. 

Wordi + Nati. 
Nati is the size of the space of Wordi. 

Wordi •*- Nati. 
Nati is the number of elements in the element string of 
Wordi. 

Wordi x Word2 -* Booleani. 
Same Word? Booleani has the value True if Wordi and 
Word 2 are identical in element string and space size. 
It has the value False otherwise. 

Wordi + Nati. 
Length of Word. Nati is the total length of Wordi, i.e., 
the sum of the number of elements and the size of the 
space of Wordi. 

Nati "•" Wordi. 
Creates a word with a single element corresponding to Nati 
and a space of size zero. 

Wordi x Nati •* Word2. 
Adds Nati to the size of the space of Wordi to create 
Word2. The element strings of Wordi and Word2 are identical 

Nati x Nat2 •» Nat3. 
Modified subtraction defined on the natural numbers. If 
Nat2 is larger than Nati, the value of Natj is zero in- 
stead of error. 
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Lastelmt(Addelmt(w,n)) • Element(n); 

Removeelmt (Addelmt (w,n)) * w; 

Nelmts(Removeelmt(w)) = Ndiffz(Nelmts(w),1); 

Lastelmt(Nullword) = REJECT; 

Removeelmt(Nu11word) • REJECT; 

Samew(w,,w2) = And(Equal(Nspaces(w,)Nspaces(w2)), 

And(Samew(Lastelmt(w,), Lastelmt(w2))/ 

(Samew(Removeelmt(w,), Removeelmt(w2)))); 

END WORD; 

OPERATION:  n = Lengthw(w); 

WHERE n IS A NATURAL; 

WHERE w IS A WORD; 

WHEREBY n * Sum(Nspaces(w),Nelmts(w)); 

END Lengthw; 

OPERATION: w « Element(n); 

WHERE w IS A WORD; 

WHERE n IS A NATURAL; 

WHEREBY w = Addelmt(REJECT,n); 

END Element; 

OPERATION: w2 • Addspaces(w,n); 

WHERE w,w2 ARE WORDS; 

WHERE n IS A NATURAL; 

WHEREBY w2 * Srtspaces(w,Sum(Nspaces(w),n)); 

END Addspaces; 

OPERATION:  n3 • Ndif f z ^ ,n2) ; 

WHERE n,,n2,n3 ARE NATURALS; 

EITHER m- « K.m„Ä( (»1#»0) OTHERWISE 3   zero   x z 

n3 * Ndiff(
2(n1#n2)); 

PARTITION OF (lUtlu) IS 

(a.#n2)|n2<n2» 
2 
(n,#n2)|n^^n2; 

END Ndiffz; Av.3 

HIGHER ORDER SOFTWARE, INC • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-9900 



I 

Specification of Data Type; LINE 

An algebraic specification of the line is given and some abstract 

operations that will be used in an example problem are defined. 

Table AV-2 is a description of the primitive and abstract opera- 

tions that have been defined. 

DEFINE LINE; 

PRIMITIVE OPERATIONS: 

line. 

word. 

natural- • 

Wline(word,); 

lstword(line,); 

Nwords(line,); 

boolean, • Samel(line,,line2); 

line. 

line. 

Head(line,,natural,); 

Tail(line,»natural,); 

line3   = Cone(line,,line2); 

AXIOMS: 

WHERE 2,1 ARE CONSTANT NATURALS; 

WHERE n,nx,n2 ARE NATURALS; 

WHERE w,w,,w2 ARE WORDS; 

WHERE line, line^, line2 ARE LINES; 

WHERE Nulline IS A CONSTANT LINE; 

Samel(Wline(w,),Wline(w2)) • Samew(w.,w2); 

Nwords(Wline(w)) • 1; 

Samel (line, line) • True- 

Head (Nulline,n) * REJECT; 

Tail (Nulline,n) • REJECT; 

Cone (Nulline,Nulline) = REJECT; 

Cone(Head(line,n),Tail(line,n)) • line; 

•• 
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Description of Operations on Type LINE 

OPERATION DESCRIPTION 

Wline: Wordi •*• Lino j. 
Word to Line. A type transformation. Linei is a line con- 
taining the single word Wordi. 

lstword: Linei •*• Nati. 
First Word. Wordi is the first word on Linei. 

Nwords: Linei * Nati. 
Nati is the number of words on Linei. 

Samel: Linei X Linei "*• Boolean . 
Same Line? Booleani has the value TRUE if Linei and Line?. 
are identical. It has the value FA!,JE otherwise. 

Head: Linei X Nati •* Line2. 
Line2 consists of the first Nati-1 words on Linei.  If Nati 
is less than or .qual tc 1, then Liii** is the NullLine, 

Tail: ^inei X Nati "•" Line?. 
Line2 is what r*mairs or .. A

t 
:-fte; the- Tirst Nati-1 words 

are removed. If Nati is greater than NWords(Linei), ther 
Line2 is the Null!jne. 

Cone: Linei X Line2 •+• Line». 
Concatination.  Line, is the .string of words on Line2 con- 
catinated onto the end of th« string of words on Linei. 

Nulline Constant value, not an operation. 
Linei is ths line with a null string of words. 

Length: Linei "* Nat2- 
Nat2 is the sum of th« lengths of each of the words within 
Linei. 

Sumw: Linei X Nati ** Nat2. 
Sum of Word Lengths. N&t2 is th« sum of the lengths of the 
first Nati words on Linei. 

Compress: Linei •* Line*. 
Iine2 is the same as Linei except that the size of the space 
preceding each word is zero for the first word and one for 
all others. 

Compact: Linei X Nati •*• Line;, 
Line2 is the same as Linei except that the first Nati woTds 
are compressed. 

Pad: Line: X Nst2 *  Line:. 
Line2 is the same as Linei except that the size of the space 
of eac:* woru has been increased by Nat2. 

Padcachw: Linei X Nati * Nat2 - Line . 
Pad Each Word. Line2 is the same as Linei except that the 
size of the space of the first Nati words has been increased 
by Nat2. 
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Nwords(Cone(line,,line,)) - Sum (Nwords (line,) ,Nwords(line2)); 

lstword(Cone(Wline(w),line)) • w; 

EITHER Head(Wline(w),n) = IDENTIFY2(Wline(w),Xn) OTHERWISE 

Head(Wline(w),n) = KREJECT C »)» 

PARTITION OF n IS 

^«2, 

2n|n*2; 

EITHER Tail(Wline(w),n) - IDENTIFY2(Wline(w), n) OTHERWISE 

Tail(Wline(w) ,n) = KREJECT(2n); 

PARTITION OF n IS 
1n|n<l, 

• 

*n|n>l; 

Same3 (Cone(line,,line2),Lone(line«,line,)) * 

OR(Samel(lint«»REJECT),Samel(line2,REJECT))j 

Head (Cone(line1,line2),n) - 

KREJECT(1|l) AND Head(line1,
2n) AND 

Concdine,,Head (line2,Ndiffz (3n,Nwords (line^))) AND 

IDENTIFY2 (Cone (line^ine^ , n) ; 

PARTITION OF n IS 

nIn<l, 

n| l<n<Nwords (line,), 

n|Nwords(line,)<n<Nwords(Cone(line,,line2))), 

r.|n>Nwords (Cone (line. ,line2)) ; 
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Tail(Cone(line,,line2),n)  • 

«REJECT^ m 

2 
Conc(line,,Tail(line2,Ndiffz( n,Nwords(line,)))) AND 

3 
Cone(Tail(line., n),line2) AND 

IDENTIFY^ (Cone (line.^, line2) 
4n; 

PARTITION OF n IS 

n(Nwords(Cone(line,,line2)< n, 
2 
n|Nwords(line,)<n<Nwords(Cone(line,,line2)), 

n|l<n<Nwords(line,), 

4n|n<l; 

END LINE; 

OPERATION:  n - Length(line^; 

WHERE linex IS A LINE; 

WHERE n IS A NATURAL; 

WHEREBY n • Sumw(line,,Nwords(line,)) ; 

END length; 

OPERATION:  n2 • Sumw(line n); 

WHERE linex is a LINE; 

WHERE n,n2 ARE NATURALS; 

EITHER n, • K..-K( llMu n) OTHERWISE 
2   Zero 2   

x 2 2     2 
WHEREBY - * Sumw( line., h-1) + Lengthw(Extract( line., n)) ; 

PARTITION OF (n,line.) IS 

(n,line,)|n * Zero, 
2 (n,line,)|n NOT» Zero; 

END Sumw; 

OPERATION:  w =* Extract (line«, n) ; 

WHERE w IS A WORD; 

WHERE   linej^   IS  A LINE; 

WHERE  n  IS  A NATURAL; 

WHEREBY w * 

END Extract; 

WHEREBY w *  lstword (Tail(line-^n)) ; 
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OPERATION:  line2 = Compress(line,); 

WHERE line,,line2 ARE LINES; 

WHEREBY Üne2 • Compact (line,,Nwords (line,)) ; 

END Compress; 

OPERATION:  line2 • Compact(line, ,n); 

WHERE n IS A NATURAL; 

WHERE line,,line2 ARE LINES; 

WHERE 1 IS A CONSTANT LINE; 
1,, EITHER WHEREBY line2 = Wline(Setspaces(Istword(line«),Zero)) 

OTHERWISE WHEREßY line., = Cone (Compact (^line,,2n-l), 
*>      2 Wline,(Setspaces(Extract("line,, n),1))) 

PARTITION OF (line,,n) IS 
1 (line,,n)|n<l, 
2        i (line,,n)ln>l; 

END Compact; 
3 

OPERATION:  line. Pad(line,,n); 

WHERE line,,line2 ARE LINES; 

WHERE n IS A NATURAL; 

WHEREBY line2 
END Pad; 

Padeachw(line,,Nwords(line,),n); 

OPERATION:  line2 » Padeachw(line,,n,,n2); 

WHERE line,,line2 ARE LINES; 

WHERE n, ,n~ ARE NATURALS; 
1 1   1 

EITHER WHEREBY line2 » ^gjm^fi   CXlM^i n^ n2>) 
2     2      2 

OTHERWISE WHEREBY iine2 • Cone(Padeach( line^ n^ - 1, n2), 

2        2 Wline(addspaces(Extract( line^n^), n2))); 

PARTITION OF (lineJL,n.,n2) IS 

(line,,n,,n2)|n, = Zero, 

(line,,n,,n2)|n, NOT« Zero; 

END Padeachw; 

AV-8 

HIGHER ORDER SOFTWARE. INC • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 -(6,17)661-3900 



., 

Line Justifier 

The Linejustify function is designed to adjust the spacing be- 

tween words of a line so that the last element of the last word 

of the line occurs at the specified margin.  This problem, 

suggested by (GRI76) and modified in (HAM76), has been re- 

formulated here to use data type LINE.  The function is further 

constrained so that the size of the spaces between any two 

words on the same line will differ by no more than one, and the 

insertion of the larger spaces will be staggered to the left or 

right in alternating lines.  Thus, odd (even) lines will have 

larger spaces separating words at the left (right) of the line. 

Also, the last line of a paragraph will be justified to the left 

only, and not to the right. Any line which cannot be compressed 

into the size of the margin without eliminating a minimum word 

spacing of size one will return an error condition.  Table AV-3 

lists the names and uses of variables of the Linejustify func- 

tion, and Table AV-4 lists the names and uses of its subfunctions 

FUNCTION:  line2 « Linejustify(line,»Margin,Lpty,Ppty); 

JOIN line, = Pptychk(Compl,Margin,Lpty,Ppty) WITH 
4 111 

INCLUDE Compl = Compress(line,) ALSO 

(Margin,Lpty,Ppty)   • 
111 

CLONE^Margin, Lpty, Ppty) ; 

EITHER line,  -  IDENTIFY? (1Compl,1Margin,J,Lpty,   Ppty)   OTHERWISE 
2 l 1 1 1 

JOIN   (2Compl,2Margin,2Lpty)   » 
111 

IDENTIFY?  *  ,(2Compl»2Marqin,2Lptv,2Ppty)   WITH ,   0  ,( Compl,  Margin,   Lpty,  Ppty) 
1#2#3 111 

2     2       2 
line, * SizechM Compl, Margin, Lpty); 

* 111 
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PARTITION OF  (Compl,Margin,Lpty,Ppty)   IS 
111 

(Compl,Margin,Lpty,Ppty)|Ppty • True, 
1 11 

(Compl,Margin,Lpty,Ppty)|Ppty • False; 
1 1 *     1 * 

EITHER line«  * IDENTIFY?(  2Compl,   2Margin,   2Lpty)   OTHESRWISE 
1 l 1     1      1 

*2      ^2       2        EITHER line., * Calcspaces(  Compl,  Margin,  Lpty) OTH22RWISE 
2 111 

3      3       3 
line2 = KREJECT^ 

2Compl, 2Margin, fcLpty); 

PARTITION OF ( Compl,2Margin,2Lpty) IS 
111 

1(  Compl, Margin, Lpty)(Length ( Compl) = Margin, 
1        1 

2 2     2       2 2        2 ( Compl, Margin, Lpty)|Length ( Compl) < Margin, 

t Compl, Margin, Lpty)(Length ( Compl) > Margin; 
1      I     1      2    

l 

JOIN line- - Lptychk(Padedl,Reml, *Lpty) WITH 

INCLUDE (Padedl, Reml) « F. ( Compl,  Margin) 
3  - 1       1 

3t 
2 

V 22 ALSO  Lpty « Clone, ( Lpty); 
2 2        l     , 1 
2 7 WHEREBY Extraspace « Ndiffz ( Margin,Length(  Compl))„ 

*2 n, • Nwords( Compl), 
1 .1 

Padedl « Pad( Compl,Quot(Extraspace,P,)), 
1 

Reml • Rem(E^traspace,n.); 
1 22 EITHER line- • Leftfill( (Padedl,Reml,  Lpty)) 

2 2 
2 22 OTHERWISE line- « Rightfill( (Padedl,Reml,  Lpty)); 

/ 2 
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PARTITION OF (Padedl,Reml, *Lpty) IS 
2 

2       2^ 
x(Padedl,Rerol, 2Lpty)| 2Lpty - True, 

2      2 

7 27 22 z(Padedl,Reml, Lpty)|  Lpty = False; 
2      2 

JOIN line2 - Cone(Taill,Padleftl) WITH 

JOIN(Taill,Pedleftl) ^ F. ^Padedl^Reml) 
1   1      1 

12 
WITH(1Padedl/

1Reml) = IDENTIFY? n ^Padedl^Reml,  
2Lpty); 

1.1 -'" 2 
WHEREBY R = (AReml,l), 

1     1 
Leftl » Head( Padedl,R), 

1  1 
Taill » Tail( Paded: R), 

1 

Padleftl « Pad(Leftl,i); 

JOIN line, • Cone(Headl,Padrightl) WITH 

JOIN(Headl,Padrightl) = F,(2Padedl,2Reml) 
4 1 1 

WITH(2Padedl,2Reml)   = IDENTIFY? 0(
2Padedi,2Reral,     2Lpty); 

ll1'2 2 

WHEREBY Rightl - Tail(2Padedi,Ntail), 

2 X       2 Ntail - Nwords( Padedl)+1- Rent!, 
1        1 

Padrightl - Pad(Rightl,1), 

Headl » Head (2Padedl,Ntail); 
1 

WHERE line,,line2,Compl,Padedl,Leftl, 

Padleftl,Taill,Rightl/Padrightl,Headl ARE LINES; 

WHERE Margin,Extraspace,n.rß; 

Ntail,Reml ARE NATURALS; 

WHERE Lpty,Ppty ARE BOOLEAN; 

END Linejustify; 
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TABLE AV-3 
Key to Variable Ksines 

NAME TYPE DESCRIPTION 

Line. LINE Output line. 

Line. LINE Input line. 

Margin NATURAL Specified margin for output line. 

Lpty BOOLEAN Line Parity. True for odd lines. False for even lines. 

Ppty BOOLEAN Paragraph Parity. True for last line of paragraph. 
False otherwise. 

Coapl LINE Compressed Line. Li after it has been left justified 
and reduced with a space of size one between each word. 

i Lengthcompl LINE Length of CompL. 

Extraspace NATURAL Size of space needed to expand CompL to fill Margin. 

N NATURAL Number of words of CompL. 

Quo NATURAL Quotient. Size of space to be divided evenly among 
the words of CompL. 

Rea NATURAL Remainder. Number of spaces that must be increased    j 
by one for PadedL to fill Margin. 

Padedl LINE Paded Line. The line CompL after Quo spaces have been 
inserted evenly among all its words. 

Leftl LINE Left Line. First portion of PadedL into which Rem 
spaces will be inserted, one to a word. 

Padleftl LINE Paded Left Line. The line LeftL after the size of each 
space has been increased by one. 

Taill LINE Tail Line. The last portion of PadedL after LeftL has 
been removed from it. 

Nttil NATURAL Number of Kords to be removed from the front of PadedL 
so that increasing by one the size of the spaces in   j 
the remainder of the line will fill the margin. 

Right) LINE Right Line. Remaining portion of PadedL after the    ! 
first Mail words have been removed. 

Padri^htl LINE Paded Right L ne. RightL after each of its spaces 
has been incrc *ed by one. 

Hcadl LINE Head Line. First NTail *ords of PadedL. 
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Table AV-4 

Description of the Subfunction of LineJustify 

NAME DESCRIPTION 

Pptychk 

Sizechk 

Calcspaces 

Lptychk 

Leftfill 

Rightful 

Paragraph Parity Check. Returns compressed line if it 
is the last of the paragraph. 

Size Check. Examines the length of the compressed line 
to determine if there is an error or if the line already 
fills the margin. 

Calculate Spaces. Determines what space can be inserted 
evenly between words and calculates the remainder that 
must be inserted either to the left or to the right of 
the line. 

Line Parity Check. Determines which side of the line to 
insert extra space, depending on line parity (LPty). 

Inserts extra space to left of line. 

Inserts extra space to right of line. 
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NOTE; The purpose of this sample system problem is to show the 

use of AXES from the point of view of explicitly demonstrating 

the interfaces of the system as they would appear to an automatic 

analyzer.  We are not attempting here to show various shorthand 

methods that are available to the user.  Thus, this sample prob- 

lem does not include, for example, the definition and the use of 

new abstract control structures which would both shorten the 

description of the system and provide for more reliable communi- 

cation from the standpoint of the human analyzer. An example 

of such a mechanism is demonstrated by the Fail Structure (c.f. 

AXES Syntax Description, Section 14.0). 
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NOMENCLATURE 

In the description of AXES the following nomenclature will be 

used. 

":="  means "is". 

"{ }" means choose one of the rows contained within. 

"[ ]" means the enclosed is optional. 

"..." means repeat with different values as often as 
necessary. 

In the syntax of AXES, the following nomenclature will be used, 

Upper case names will designate lexical items of AXES (key- 
words) . 

"set of variables" means a list of variables possibly en- 
closed in parentheses. 

Constants and abstract control structure names begin with 
an upper c?se character followed by zero or more lower case 
characters. 

A variable is indicated by all lower case characters. 

A value of a particular data type can be indicated by the 
name of the data type in lower case characters, possibly 
subscripted. 
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STRUCTURE L  4... 

"STRUCTURE:"  y " = " S " (" x ");" 

declaration... 

definition... 

"SYNTAX:"  user defined syntax";" 

"END" S ";" 

user defined syntax: • connectorx yl  "=" Sx TXjT)",.. 

connector yn  " = " Sn *("x ")" n Jn n    n 

where x, y are variables or sets of variables whose values are 

in the same types as the members of the ordered pairs that make 

up the mappings in the tuples of S; 

and S is a structure name; 

and connector, is a user-defined name, possibly empty; 

and y. = S-(x.) is an unspecified mapping (see Section 10.0 for 

use of user-defined syntax). 

The unspecified mapping names, used in definition statements within 

a structure, are nested subscripted names with respect to the root 

module name. 

OPERATION 

"OPERATION:"     y  "••'   L  "("   x   H);" 

declaration... 

definition... 
"END-   L  ";" 

where x,  y are variables or sets of variables whose values are 

in the same types as the members of the ordered pairs which are 
the mappings, 

and L is an operation name. 
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, 
FUNCTION 

"FUNCTION:"  y "=" I   "(" x ");" 

declaration... 

definition... 

"END" F ";" 

where x, y are particular variables or particular sets of vari- 

ables whose values are in the same types as the members of the 

ordered pairs which are the mappings, 

and F is a function name. 

DECLARATION 

In declaration., x is a variable, y.,... is a set of variables, 

T is 9  constant or variable data type name, and MS" concatenated 

with T denotes a plural type name. 

declaration^- = "WHERE"! x "IS" "A" 
AN' H"H  ["CONSTANT"]  T 

A"   T,... 
"AN") lTi"OR"...T 

"OF SOME TYPE" 

n 

Xi " ARE"  / ("CONSTANT"] T"S" 

x "IS 

T"S" "OR". ..T "S! 

i n 

'OF SOME TYPES" 

'OF THE SAME TYPE"! 

("y.%"...") 

SOME TYPE' 
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In declaration^ x is a variable or a set of variables enclosed 

in parentheses, Jy xs variable or set of variables whose values 

are members of the members of a partition of the set of values 

of the variables that x represents. 

declaration- = "PARTITION OF" x "IS" ANY PARTITION 

tv 1 tv, 

and 

true vai cxp: 

!• "("exp M)M 

F "("cxp...")" 

cxp F exp 

tv. : = 
l 

t rue va 1 *cxp 

"("true val exp. "."...true val cxp.") 

true val exp. evaluates to the boolean value True, and exp is 

in terms of x and values of x. 

DEFINITION 

In a definition, y,x are variables or sets of variables, and 

F is a structure, operation, or function. 

definition,: • 

. ,      II  =  II      p      II   /  II      y. II  \   II 

primitive definition 

user-defined definition 

mapping assertion 

Primitive definition: 
definition. "AND"... 

definition ";" 
n 
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,,„«v A~*<~*A *~*i-n.i~~ connector, definition, ... user-defined definition: • 11 
connector definition n n 

where a set of connectors is defined in a particular structure 

definition (see Section 8.0). 

mapping assertion:  = "WHEREBY" y "*" exp"; 

EXPRESSIONS 

exp: 

where F is an operation or a function name and 

x is a variable. 

CORRESPONDENCE BETWEEN INTRINSIC DATA TYPE OPERATIONS AND INFIX SYMBOLS 

Operation Symbols 

Or, Por • 

And, Pand 4 

Not, Pnot, loop, Ropp prefix - 

Same, Ident, Equal, ?Equal?, 
?Iequal?, ?Requal? • 

?>?, ?I>?, ?R>? > 

Sum, Isum, Rsum + 

Idiff, Rdiff 

Prod, Iprod, Rprod 
Rdiv 

Cone 
/ 

»1 
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The precedence of AXE.r> operators is as follows: 

Highest 

Lowest 

** prefix + 

* / 

+ - 

& 

i 

Operator Associativity 

If an expression contains multiple Operators of equal precedence, 

the meaning of the expression is determined by ;he associativity 

of the operators. All prefix operators and the"**" infix operator 

are right-associative, and all other operators are left-associa- 

tive. 

Left-associative operators give priority to other operators of 

equal precedence to their left, while right-associative operators 

give priority to operators of equal precedence to their right. 

For example, 

DATA TYPSS 

"DATA TYPE:- name ";H 

"PRIMITIVE OPERATIONS;" 

primitive operations... 

"AXIOMS?" 

declaration... 

assertion (about a type)... 

-END" narae-;- 

where 

(1) name is the abstract data type name. 
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primitive operations typename.   ••"  P.   "("  typenaroe .,... ") ; 

where    typename.   is a data type name in lower-case characters 
and k is an integer,  possibly empty,  and P.   is a primitive 
operation name. 

assertion   (about a  type): 
definition.! 
F-Pexp,-)- 

definition, 
exp. 

intrinsic types: « 

boolean 
natural 
integer 
rational 

'property (of T)| 
set  (of T) 
line 

value; 

' boolean value 
natural value 
integer value 

(rational value 
property (of T)value 
set (of T) value 
line value 
extrinsic value 

boolean value True 

Fa lse) 

natural value: 

inteqer value: {   }  natural 
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rational value: 
integer«, 

integer, .integer- }- E" integer] 

property (of T) 
value: "PROPERTY OF" t "IN" T"|"true 

val exp. 

set (of T) value: 
{value,,...) 

• I   A.       II TXT"  T  MM "SET OF" t "IN" T true val expl. 

line value: •any finite string of symbols 
possibly empty1 

Extrinsic data type values are defined as "'CONSTANT' T" using 

a declaration, statement (Section 9.0). 

-DERIVED OPERATION:"  y "«" D MP x ");• 

declaration... 

assertion(about D)... 

-END" D ";" 

where x,y are variables or sets of variables and D is a 

derived operation name. 

(definition, 

assertion(about D): =  ^."("exp.^ 

definition. 
4 

F "Cexp •)• 
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